Carnegie Mellon

15-213 Recitation: C Review

TA's
30 Sept 2019

Agenda

m Logistics

m Attack Lab Conclusion
m C Assessment

m C Programming Style
m C Exercise

m Cache Lab Overview

m Appendix:
m Valgrind
m Clang /LLVM
m Cache Structure

Logistics

m Attack Lab is due tomorrow!
m Come to office hours for help

m Phase 5 is only worth 5 points
m 0.2% of your grade = 0% of your grade

m Cache Lab will be released shortly after!

Attack Lab Conclusion

m Don’t use functions vulnerable to buffer overflow (like gets)

m Use functions that allow you to specify buffer lengths:
m fgets instead of gets
m strncpy instead of strcpy
m strncat instead of strcat
m snprintf instead of sprint

m Use sscanf and fscanf with input lengths (%213s)

m Stack protection makes buffer overflow very hard...
m But very hard # impossible!

C Assessment

m 3.5 Basic C Programming Questions

m Take some time to write down your answer for each question

C Assessment: Question 1

Consider the following code snippet which allocates an array and sets the values. Which
lines have a problem and how can you fix it?

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));
3 for (int i=0; i<213; i++) {

4 if (a[i] == @) a[i]=1;

5 else a[i]=-1;

6 }

7
8

return 0;

}

Carnegie Mellon

C Assessment: Question 1

m malloc can faill

1 int main(int argc, char** argv) {
2 int *a = (int*) malloc(213 * sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {
4 if (a[i] == 0) a[i]=1i;
5 else a[i]=-1;

6 }

7 return 0;

8

Carnegie Mellon

C Assessment: Question 1

m Allocated memory is not initialized!

1 int main(int argc, char** argv) {
2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {
4 if (a[i] == @) a[i]=i;
5 else a[i]=-1;

6 }

7 return 0;

8

Carnegie Mellon

C Assessment: Question 1

m Declaring variables inside a for loop requires -std=c99

1 int main(int argc, char** argv) {
2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int 1i=0; i<213; i++) {
4 if (a[i] == 0) a[i]=i;
5 else a[i]=-1;

6 }

7 return 0;

8

Carnegie Mellon

C Assessment: Question 1

m All allocated memory must be freed!

1 int main(int argc, char** argv) {
2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {
4 if (a[i] == 0) a[i]=1i;
5 else a[i]=-1;
6 }

free(a);
7 return 0;

Carnegie Mellon

C Assessment: Question 2

m What are the values of A and B?
#define SUM(x, y) X + vy

int sum(int x, int y) {
return x + y;

}
int A = SUM(2, 1) * 3;
int B = sum(2, 1) * 3;

Carnegie Mellon

C Assessment: Question 2

m What is wrong with our macro SUM?
#define SUM(x, y) X + vy

int sum(int x, int y) {
return x + y;

}
int A = SUM(2, 1) * 3; /J/ A=2+1%3=5I?
int B = sum(2, 1) * 3; // B =9

Carnegie Mellon

C Assessment: Question 2

m Use parentheses around result!
#define SUM(x, y) (x + vy)

int sum(int x, int y) {
return x + y;

}
int A = SUM(2, 1) * 3; // A =9
int B = sum(2, 1) * 3; // B =9

Carnegie Mellon

C Assessment: Question 2 Part B

m What are the values of A and B?
#define MULT(x, y) (x * vy)

int mult(int x, int y) {
return x * y;

}
int A = MULT(2, @ + 1) * 3;
int B = mult(2, @0 + 1) * 3;

Carnegie Mellon

C Assessment: Question 2 Part B

m What is wrong with our macro MULT?
#define MULT(x, y) (x * vy)

int mult(int x, int y) {
return x * y;

}
int A = MULT(2, @ + 1) * 3; // A= (2*0+1)* 3 =37
int B = mult(2, @0 + 1) * 3; // B =6

Carnegie Mellon

C Assessment: Question 2 Part B

m Use parentheses around macro arguments (and result)!
#define MULT(x, y) ((x) * (y))

int mult(int x, int y) {
return x * y;

}
int A = MULT(2, @ + 1) * 3; // A= ((2) * (0 +1)) *3 =6
int B = mult(2, @0 + 1) * 3; // B =6

C Assessment: Question 2

* Macros are good for compile-time decisions
 Assert, requires, etc
» dbg_print

* Macros are not functions and should not be used
interchangeably

Carnegie Mellon

C Assessment: Question 3

m What lines make safe_int malloc not so safe?

1 int *safe_int malloc(int *pointer) {

2 pointer = malloc(sizeof(int));
3 if (pointer == NULL) exit(-1);
4 return &pointer;

5}

Carnegie Mellon

C Assessment: Question 3

m pointer is a local copy of the pointer! Modifying *pointer only changes the value
within the scope of this function not outside

m Passing in an int** let’s us change the value of int* pointer

int *safe_int malloc(int **pointer) {
*pointer = malloc(sizeof(int));
if (pointer == NULL) exit(-1);
return &pointer;

uvi b w N R

Carnegie Mellon

C Assessment: Question 3

m &pointer is a location on the stack in safe_int malloc’s frame!

m The address of something on the stack will be invalid after the function’s
execution

1 int **safe_int malloc(int **pointer) {
2 *pointer = malloc(sizeof(int));

3 if (pointer == NULL) exit(-1);

4 return pointer;

5

C Concepts: Pointers

Pointer: stores address of some value in memory
Example:

Let us have a pointer a where int* a = 0x100
*a = accesses value stored at location 0x100
a +i=0x100 + sizeof(*a) * i

Dereferencing a NULL pointer causes segfault

C Concepts: Valgrind

m Tool used for debugging memory use

m Find corrupted memory and unexpected program behavior
Find many potential memory leaks and double frees
Shows heap usage over time
Detects invalid memory reads and writes
To learn more... man valgrind

m Finding memory leaks

m $ valgrind -leak-resolution=high -leak-check=full
-show-reachable=yes -track-fds=yes ./myProgram argl arg2

C Concepts: Structs + Unions

Struct: groups list of variables under one block in memory
Union: store different data types in same region of memory
Many ways to refer to same memory location

struct temp { union temp {
int i; i (4 bytes) | ¢ (1) int i; i/c
char c; char c;

C Assessment Conclusion

m Did you answer every question correctly and know each concept? If not...
m Refer to the C Bootcamp slides

m Were the test and concepts so easy you were bored? If not...
m Refer to the C Bootcamp slides

m When in doubt...
m Refer to the C Bootcamp slides

m This will be very important for the rest of this class, so make sure you are
comfortable with the material covered or come to the C Bootcamp!

C Programming Style

m Write comments and then implement functionality
m Communicate meaning through naming choices
m Code should be testable. Modularity supports this
m Use consistent formatting

m Common bugs: memory and file descriptor leaks, check errors
and failure conditions

m Warning: Dr. Evil has returned to grade style on Cache Lab! ©
m Refer to full 213 Style Guide: http://cs.cmmu.edu/~213/codeStyle.html

http://cs.cmu.edu/~213/codeStyle.html

C Exercise: $ man 3 getopt

m int getopt(int argc, char * const argv[], const char
*optstring);

m getopt returns -1 when done parsing

m optstring is string with command line arguments
m Characters followed by colon require arguments
m Find argument text in char *optarg
m getopt can'’t find argument or finds illegal argument sets optarg to “?”
m Example: “abc:d:”

m a and b are boolean arguments (not followed by text)
m c and d are followed by text (found in char *optarg)

Carnegie Mellon

while ((opt = getopt(argc, argv, "vn:")) != -1) {

switch (opt) { \
case 'v':

Returns -1 when

verbose = 1; done parsing
break;
case 'n':
n = atoi(optarg); Parses value to
break; store in n b/c colon
default:
fprintf (stderr, "usage: ..");

exit (1) ;

C Exercise: C Hints and Math Reminders

Goal: determine whether triangle is Pythagorean triple
Parse input side lengths a, b, ¢ and optional help flag (1 or 0)

m a’+ b% =c?

m = a=+Vc? — b2
m = b=+Vc?—-a?
m = c=+a?+ b?

m = 3%24+42 =52

m String to float in C:
#include <stdlib.h>

float atof(const char *str);

m Square root in C:
#include <math.h>
float sqgrt(float x);

C Exercise

m Learn to use getopt
m Extremely useful for Cache Lab
m Processes command line arguments

m Let’s write a Pythagorean Triples Solver!
m Pair up!
m Login to a shark machine
m $ wget http://cs.cmu.edu/~213/recitations/rec6.tar
|
|

$ tar xvf recé6.tar
$ cd recé

m Test Cases
m 3,45
m 5 12,13
m 7,24, 25

http://cs.cmu.edu/~213/recitations/rec6.tar

Carnegie Mellon

Cache Lab Overview

m Programs exhibiting locality run a /ot faster!
m Temporal Locality — same item referenced again
m Spatial Locality — nearby items referenced again

copyij

16000 -

14000 -

m Cache Lab’s Goal:
m Understand how L1, L2, ... etc. caches work

m Optimize memory dependent code to minimize
cache misses and evictions

m Noticeable increase in speed

12000 -
10000 -

8000 -G

Read throughput (MB/s)

6000 -

4000 -

2000 -+

8k

512k
— 2m

8m B
" 3om Size (bytes)
28m

S a2k
] " . s3 Krr"'r)
m The use of git is required s
. . . . ide (x8 bytes, s9
m Commit regularly with meaningful commit messages

s111

If you get stuck...

m Reread the writeup

m Look at CS:APP Chapter 6

m Review lecture notes (http://cs.cmu.edu/~213)

m Come to Office Hours (Sunday to Friday, 5:30-9:30pm GHC-5207)
m Post private question on Piazza

m man malloc, man valgrind, man gdb

http://cs.cmu.edu/~213

Cache Lab Tips!

m Review cache and memory lectures
m Ask if you don’t understand something

m Start early, this can be a challenging lab!

m Don’t get discouraged!

m If you try something that doesn't work, take a well deserved break,
and then try again

m Finally, Good luck on Cache Lab!

Appendix

m Valgrind
m Clang / LLVM
m Cache Structure

Appendix: Clang / LLVM

m Clang is a (gcc equivalent) C compiler
m Support for code analyses and transformation
m Compiler will check you variable usage and declarations
m Compiler will create code recording all memory accesses to a file
m Useful for Cache Lab Part B (Matrix Transpose)

Appendix: Cache Structure

E = 2¢ lines per set

A
'd Y

-

Address of word:
eeee | t bits | s bits |bbitS|

S=Zssets< W_/R/_/\/_J

eeee tag set block
index offset
0 00000000 OCOGCOGCEOGOOOEOGOOGOEONOSOEOSEONOSONOSONOIO
o000
\.
data begins at this offset
Vv tag 0|12 ccc°- B-1
valid bit S~

B = 2® bytes per cache block (the data)

