
15-213 Recitation: C Review

TA’s
30 Sept 2019

Agenda
■ Logistics
■ Attack Lab Conclusion
■ C Assessment
■ C Programming Style
■ C Exercise
■ Cache Lab Overview
■ Appendix:

■ Valgrind
■ Clang / LLVM
■ Cache Structure

Logistics

■ Attack Lab is due tomorrow!
■ Come to office hours for help
■ Phase 5 is only worth 5 points

■ 0.2% of your grade ≈ 0% of your grade

■ Cache Lab will be released shortly after!

Attack Lab Conclusion

■ Don’t use functions vulnerable to buffer overflow (like gets)
■ Use functions that allow you to specify buffer lengths:

■ fgets instead of gets
■ strncpy instead of strcpy
■ strncat instead of strcat
■ snprintf instead of sprint

■ Use sscanf and fscanf with input lengths (%213s)

■ Stack protection makes buffer overflow very hard…
■ But very hard ≠ impossible!

C Assessment

■ 3.5 Basic C Programming Questions

■ Take some time to write down your answer for each question

C Assessment: Question 1
Consider the following code snippet which allocates an array and sets the values. Which
lines have a problem and how can you fix it?

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

7 return 0;

8 }

C Assessment: Question 1
■ malloc can fail!

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));

if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

7 return 0;

8 }

C Assessment: Question 1
■ Allocated memory is not initialized!

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));

if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

7 return 0;

8 }

C Assessment: Question 1
■ Declaring variables inside a for loop requires -std=c99

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));

if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

7 return 0;

8 }

C Assessment: Question 1
■ All allocated memory must be freed!

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));

if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

free(a);

7 return 0;

8 }

C Assessment: Question 2
■ What are the values of A and B?

#define SUM(x, y) x + y

int sum(int x, int y) {

return x + y;

}

int A = SUM(2, 1) * 3;

int B = sum(2, 1) * 3;

C Assessment: Question 2
■ What is wrong with our macro SUM?

#define SUM(x, y) x + y

int sum(int x, int y) {

return x + y;

}

int A = SUM(2, 1) * 3; // A = 2 + 1 * 3 = 5!?

int B = sum(2, 1) * 3; // B = 9

C Assessment: Question 2
■ Use parentheses around result!

#define SUM(x, y) (x + y)

int sum(int x, int y) {

return x + y;

}

int A = SUM(2, 1) * 3; // A = 9

int B = sum(2, 1) * 3; // B = 9

C Assessment: Question 2 Part B
■ What are the values of A and B?

#define MULT(x, y) (x * y)

int mult(int x, int y) {

return x * y;

}

int A = MULT(2, 0 + 1) * 3;

int B = mult(2, 0 + 1) * 3;

C Assessment: Question 2 Part B
■ What is wrong with our macro MULT?

#define MULT(x, y) (x * y)

int mult(int x, int y) {

return x * y;

}

int A = MULT(2, 0 + 1) * 3; // A = (2 * 0 + 1) * 3 = 3?!

int B = mult(2, 0 + 1) * 3; // B = 6

C Assessment: Question 2 Part B
■ Use parentheses around macro arguments (and result)!

#define MULT(x, y) ((x) * (y))

int mult(int x, int y) {

return x * y;

}

int A = MULT(2, 0 + 1) * 3; // A = ((2) * (0 + 1)) * 3 = 6

int B = mult(2, 0 + 1) * 3; // B = 6

C Assessment: Question 2

• Macros are good for compile-time decisions
• Assert, requires, etc
• dbg_print

• Macros are not functions and should not be used
interchangeably

C Assessment: Question 3
■ What lines make safe_int_malloc not so safe?

1 int *safe_int_malloc(int *pointer) {

2 pointer = malloc(sizeof(int));

3 if (pointer == NULL) exit(-1);

4 return &pointer;

5 }

C Assessment: Question 3
■ pointer is a local copy of the pointer! Modifying *pointer only changes the value

within the scope of this function not outside

■ Passing in an int** let’s us change the value of int* pointer

1 int *safe_int_malloc(int **pointer) {

2 *pointer = malloc(sizeof(int));

3 if (pointer == NULL) exit(-1);

4 return &pointer;

5 }

C Assessment: Question 3
■ &pointer is a location on the stack in safe_int_malloc’s frame!

■ The address of something on the stack will be invalid after the function’s
execution

1 int **safe_int_malloc(int **pointer) {

2 *pointer = malloc(sizeof(int));

3 if (pointer == NULL) exit(-1);

4 return pointer;

5 }

C Concepts: Pointers

Pointer: stores address of some value in memory
Example:

• Let us have a pointer a where int* a = 0x100

• *a = accesses value stored at location 0x100

• a + i = 0x100 + sizeof(*a) * i

• Dereferencing a NULL pointer causes segfault

C Concepts: Valgrind

■ Tool used for debugging memory use
■ Find corrupted memory and unexpected program behavior
■ Find many potential memory leaks and double frees
■ Shows heap usage over time
■ Detects invalid memory reads and writes
■ To learn more… man valgrind

■ Finding memory leaks
■ $ valgrind –leak-resolution=high –leak-check=full
–show-reachable=yes –track-fds=yes ./myProgram arg1 arg2

C Concepts: Structs + Unions

Struct: groups list of variables under one block in memory
Union: store different data types in same region of memory

• Many ways to refer to same memory location

struct temp { union temp {
int i; int i;
char c; char c;

}; };

 i (4 bytes) c (1) i / c

C Assessment Conclusion

■ Did you answer every question correctly and know each concept? If not…
■ Refer to the C Bootcamp slides

■ Were the test and concepts so easy you were bored? If not…
■ Refer to the C Bootcamp slides

■ When in doubt…
■ Refer to the C Bootcamp slides

■ This will be very important for the rest of this class, so make sure you are
comfortable with the material covered or come to the C Bootcamp!

C Programming Style

■ Write comments and then implement functionality
■ Communicate meaning through naming choices
■ Code should be testable. Modularity supports this
■ Use consistent formatting
■ Common bugs: memory and file descriptor leaks, check errors

and failure conditions

■ Warning: Dr. Evil has returned to grade style on Cache Lab! ☺
■ Refer to full 213 Style Guide: http://cs.cmu.edu/~213/codeStyle.html

http://cs.cmu.edu/~213/codeStyle.html

C Exercise: $ man 3 getopt

■ int getopt(int argc, char * const argv[], const char
*optstring);

■ getopt returns -1 when done parsing

■ optstring is string with command line arguments
■ Characters followed by colon require arguments

■ Find argument text in char *optarg
■ getopt can’t find argument or finds illegal argument sets optarg to “?”
■ Example: “abc:d:”

■ a and b are boolean arguments (not followed by text)
■ c and d are followed by text (found in char *optarg)

 while ((opt = getopt(argc, argv, "vn:")) != -1) {

 switch (opt) {

 case 'v':

 verbose = 1;

 break;

 case 'n':

 n = atoi(optarg);

 break;

 default:

 fprintf(stderr, "usage: …");

 exit(1);

 }

 }

Returns -1 when
done parsing

Parses value to
store in n b/c colon

C Exercise: C Hints and Math Reminders

Goal: determine whether triangle is Pythagorean triple
Parse input side lengths a, b, c and optional help flag (1 or 0)

C Exercise
■ Learn to use getopt

■ Extremely useful for Cache Lab
■ Processes command line arguments

■ Let’s write a Pythagorean Triples Solver!
■ Pair up!
■ Login to a shark machine
■ $ wget http://cs.cmu.edu/~213/recitations/rec6.tar
■ $ tar xvf rec6.tar
■ $ cd rec6

■ Test Cases
■ 3, 4, 5
■ 5, 12, 13
■ 7, 24, 25

http://cs.cmu.edu/~213/recitations/rec6.tar

Cache Lab Overview
■ Programs exhibiting locality run a lot faster!

■ Temporal Locality – same item referenced again
■ Spatial Locality – nearby items referenced again

■ Cache Lab’s Goal:
■ Understand how L1, L2, … etc. caches work
■ Optimize memory dependent code to minimize

cache misses and evictions
■ Noticeable increase in speed

■ The use of git is required
■ Commit regularly with meaningful commit messages

If you get stuck…

■ Reread the writeup
■ Look at CS:APP Chapter 6
■ Review lecture notes (http://cs.cmu.edu/~213)
■ Come to Office Hours (Sunday to Friday, 5:30-9:30pm GHC-5207)
■ Post private question on Piazza
■ man malloc, man valgrind, man gdb

http://cs.cmu.edu/~213

Cache Lab Tips!

■ Review cache and memory lectures
■ Ask if you don’t understand something

■ Start early, this can be a challenging lab!

■ Don’t get discouraged!
■ If you try something that doesn't work, take a well deserved break,

and then try again

■ Finally, Good luck on Cache Lab!

Appendix

■ Valgrind
■ Clang / LLVM
■ Cache Structure

Appendix: Clang / LLVM

■ Clang is a (gcc equivalent) C compiler
■ Support for code analyses and transformation
■ Compiler will check you variable usage and declarations
■ Compiler will create code recording all memory accesses to a file
■ Useful for Cache Lab Part B (Matrix Transpose)

Appendix: Cache Structure

