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Midterm Exam This Week

3 hours + 1 hour for regrade requests
Bring your ID!

m 1 double-sided page of notes (in English)

= No preworked problems from prior exams

m 7 questions

m Report to the room
= TA will verify your notes and ID
= TAs will give you your exam server password

= Login via Andrew, then navigate to exam server and use special
exam password
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Midterm Topics

Arrays

Cache

Bit Operations
Floating Point
Stack

Structs
Assembly
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Stack Review

m In the following questions, treat them like the exam
= Canyou answer them from memory?
= Write down your answer

= Talk to your neighbor, do you agree?

m Discuss:
What is the stack used for?
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Stack Manipulation

m We execute:

mov $0x15213, %rax
pushg %Srax

m For each of the following instructions, determine if they
will result in the value 0x15213 being placed in %rcx?

1) mov (%rsp), %Srcx

) mov 0x8(%rsp), %rcx
3) mov %rsp, %rcx
4)

popg Srcx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5



Carnegie Mellon

Stack Manipulation

m We execute:

mov $0x15213, %rax
pushg %Srax

m For each of the following instructions, determine if they
will result in the value 0x15213 being placed in %rcx?

1) mov (%rsp), %Srcx

mov 0x8 (%rsp), %rcx

)
3) mov %rsp, %rcx
4)

popg %rcx
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Stack is memory

m We execute:

mov $0x15213, %rax
pushg %Srax

popg srax

m If we now execute: mov -0x8 (%rsp), %rcx
what value is in %rcx?

1) Ox0 / NULL
2) Seg fault
3) Unknown
4) 0x15213
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Stack is memory

m We execute:
mov $0x15213, %rax
pushg %Srax

popg srax

m If we now execute: mov -0x8 (%rsp), %rcx
what value is in %rcx?

1) Ox0 / NULL
2) Seg fault
3) Unknown

4)P7I5T
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x86-64 Calling Convention

m  What does the calling convention govern?
1) How large each type is.
2) How to pass arguments to a function.
3) The alignment of fields in a struct.
4) When registers can be used by a function.
5) Whether a function can call itself.
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x86-64 Calling Convention

m  What does the calling convention govern?
1) How large each type is.
2) 1-Iow to pass arguments to a function.
3) The alignment of fields in a struct.
4) YVhen registers can be used by a function.
5) Whether a function can call itself.
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Register Usage

m The calling convention gives meaning to every register,
describe the following 9 registers:

Function Argument

Srdx Return Value

el Callee Save
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Register Usage

m The calling convention gives meaning to every register,
describe the following 9 registers:

Function Argument

o°
K
1)]
-
o OO kL N W b
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Register Usage

m  Which line is the first violation of the calling convention?

mov $0x15213, %rax
push %rax

mov 0x10(%rsp), %rcx
mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx
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Register Usage

m  Which line is the first violation of the calling convention?

mov $0x15213, %rax
push %rax
mov 0x10(%rsp), %rcx
mov %rbx, %rax
pop %rdx
push %rax
pop %rbx
@V %rcx, %rbx> < Until this point, the callee has

preserved the callee-save value.
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Sometimes arguments are implicit

How many arguments does “rsr” take?
How many registers are changed before the function call?

(Note, %sil is the low 8 bits of %rsi)

0x0400596 <+0>: cmp %$sil, (%$rdi, %rdx,1)
0x040059%9a <+4>: je 0x4005ae <rsr+24>
0x040059c <+6>: sub $0x8,%rsp
0x04005a0 <+10>: sub $0x1, $rdx
0x04005a4 <+14>: callg 0x400596 <rsr>
0x04005a9 <+19>: add $0x8,%rsp
0x04005ad <+23>: retq

0x04005ae <+24>: mov %edx , $eax

0x04005b0 <+26>: retq
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Arguments can already be “correct”

m rsrdoes not modify s and t, so the arguments in those
registers are always correct

int rsr(char* s, char t, size t pos)
{

if (s[pos] Jz t)/ return pos;
return rsr(s, t, pos - 1);
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Recursive calls

m Describe the stack after doThis(4) returns.

void doThis (int count)

{
char buf[8];
strncpy (buf, “Hi 152137, sizeof (buf))
if (count > 0) doThis(count - 1);

}

push %rbx

sub $0x10, %rsp

mov %$edi, $ebx

movabs $0x3331323531206948, %rax

mov $rax, (%rsp)
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Recursive Calls

ret addr (main)

saved rbx

“Hi 15213”
ret addr (doThis 4)

saved rbx

“Hi 15213”
ret addr (doThis 3)

saved rbx

“Hi 15213”
ret addr (doThis 2)

saved rbx

“Hi 15213”
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Struct Alignment

Char: 1 byte

Short: 2 byte

Int, Float: 4 bytes

Long, Double, Pointer: 8 bytes

struct foo {
int *p;
char b;
char c;
int x;
short y;
char[4] buf;
b

How would this be represented?
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Struct Alignment

struct foo {
int *p;
char b;
char c;
int x;
short y;
char[4] buf;
b

P P P P P P P P
b c - - X X X X
y y buf buf buf buf - -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20



Carnegie Mellon

Struct Alignment

Char: 1 byte

Short: 2 byte

Int, Float: 4 bytes

Long, Double, Pointer: 8 bytes

struct foo { struct bar {
int *p; char a;
char b; int b;
char c; struct foo c;
int x; L
short y;
char[4] buf;
b

Now how do we represent bar?
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Struct Alignment

struct foo { struct bar {
int *p; char a;
char b; int b;
char c; struct foo c;
int x; }§
short y;

char[4] buf;
b

a ; - . b b b b
C C Cc C C C C C
(o] C C C C (o] C C
C C C C C C C C
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