Carnegie Mellon

Recitation 8: Midterm Review

15-213: Introduction to Computer Systems
Oct 14, 2019

Instructor:
Your TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Midterm Exam This Week

3 hours + 1 hour for regrade requests
Bring your ID!

m 1 double-sided page of notes (in English)

= No preworked problems from prior exams

m 7 questions

m Report to the room
= TA will verify your notes and ID
= TAs will give you your exam server password

= Login via Andrew, then navigate to exam server and use special
exam password

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Midterm Topics

Arrays

Cache

Bit Operations
Floating Point
Stack

Structs
Assembly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Stack Review

m In the following questions, treat them like the exam
= Canyou answer them from memory?
= Write down your answer

= Talk to your neighbor, do you agree?

m Discuss:
What is the stack used for?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Stack Manipulation

m We execute:

mov $0x15213, %rax
pushg %Srax

m For each of the following instructions, determine if they
will result in the value 0x15213 being placed in %rcx?

1) mov (%rsp), %Srcx

) mov 0x8(%rsp), %rcx
3) mov %rsp, %rcx
4)

popg Srcx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Stack Manipulation

m We execute:

mov $0x15213, %rax
pushg %Srax

m For each of the following instructions, determine if they
will result in the value 0x15213 being placed in %rcx?

1) mov (%rsp), %Srcx

mov 0x8 (%rsp), %rcx

)
3) mov %rsp, %rcx
4)

popg %rcx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Stack is memory

m We execute:

mov $0x15213, %rax
pushg %Srax

popg srax

m If we now execute: mov -0x8 (%rsp), %rcx
what value is in %rcx?

1) Ox0 / NULL
2) Seg fault
3) Unknown
4) 0x15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Stack is memory

m We execute:
mov $0x15213, %rax
pushg %Srax

popg srax

m If we now execute: mov -0x8 (%rsp), %rcx
what value is in %rcx?

1) Ox0 / NULL
2) Seg fault
3) Unknown

4)P7I5T

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

x86-64 Calling Convention

m What does the calling convention govern?
1) How large each type is.
2) How to pass arguments to a function.
3) The alignment of fields in a struct.
4) When registers can be used by a function.
5) Whether a function can call itself.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Calling Convention

m What does the calling convention govern?
1) How large each type is.
2) 1-Iow to pass arguments to a function.
3) The alignment of fields in a struct.
4) YVhen registers can be used by a function.
5) Whether a function can call itself.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Register Usage

m The calling convention gives meaning to every register,
describe the following 9 registers:

Function Argument

Srdx Return Value

el Callee Save

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Register Usage

m The calling convention gives meaning to every register,
describe the following 9 registers:

Function Argument

o°
K
1)]
-
o OO kL N W b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Register Usage

m Which line is the first violation of the calling convention?

mov $0x15213, %rax
push %rax

mov 0x10(%rsp), %rcx
mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Register Usage

m Which line is the first violation of the calling convention?

mov $0x15213, %rax
push %rax
mov 0x10(%rsp), %rcx
mov %rbx, %rax
pop %rdx
push %rax
pop %rbx
@V %rcx, %rbx> < Until this point, the callee has

preserved the callee-save value.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Sometimes arguments are implicit

How many arguments does “rsr” take?
How many registers are changed before the function call?

(Note, %sil is the low 8 bits of %rsi)

0x0400596 <+0>: cmp %$sil, (%$rdi, %rdx,1)
0x040059%9a <+4>: je 0x4005ae <rsr+24>
0x040059c <+6>: sub $0x8,%rsp
0x04005a0 <+10>: sub $0x1, $rdx
0x04005a4 <+14>: callg 0x400596 <rsr>
0x04005a9 <+19>: add $0x8,%rsp
0x04005ad <+23>: retq

0x04005ae <+24>: mov %edx , $eax

0x04005b0 <+26>: retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Arguments can already be “correct”

m rsrdoes not modify s and t, so the arguments in those
registers are always correct

int rsr(char* s, char t, size t pos)
{

if (s[pos] Jz t)/ return pos;
return rsr(s, t, pos - 1);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Recursive calls

m Describe the stack after doThis(4) returns.

void doThis (int count)

{
char buf[8];
strncpy (buf, “Hi 152137, sizeof (buf))
if (count > 0) doThis(count - 1);

}

push %rbx

sub $0x10, %rsp

mov %$edi, $ebx

movabs $0x3331323531206948, %rax

mov $rax, (%rsp)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Recursive Calls

ret addr (main)

saved rbx

“Hi 15213”
ret addr (doThis 4)

saved rbx

“Hi 15213”
ret addr (doThis 3)

saved rbx

“Hi 15213”
ret addr (doThis 2)

saved rbx

“Hi 15213”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Struct Alignment

Char: 1 byte

Short: 2 byte

Int, Float: 4 bytes

Long, Double, Pointer: 8 bytes

struct foo {
int *p;
char b;
char c;
int x;
short y;
char[4] buf;
b

How would this be represented?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Struct Alignment

struct foo {
int *p;
char b;
char c;
int x;
short y;
char[4] buf;
b

P P P P P P P P
b c - - X X X X
y y buf buf buf buf - -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Struct Alignment

Char: 1 byte

Short: 2 byte

Int, Float: 4 bytes

Long, Double, Pointer: 8 bytes

struct foo { struct bar {
int *p; char a;
char b; int b;
char c; struct foo c;
int x; L
short y;
char[4] buf;
b

Now how do we represent bar?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Struct Alignment

struct foo { struct bar {
int *p; char a;
char b; int b;
char c; struct foo c;
int x; }§
short y;

char[4] buf;
b

a ; - . b b b b
C C Cc C C C C C
(o] C C C C (o] C C
C C C C C C C C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

