Future of Computing:
Beyond the Edge

December 5, 2019
18-213
Emily Ruppel



No batteries —> new environments

* Harsh, difficult-to-access environments

» Maintenance is expensive or intrusive

https://www.nasa.gov/mission_pages/Glory/multimedia/HighRes_Glory_Still03.html
https://www.sciencedaily.com/releases/2014/01/140120090428.htm
https://www.flickr.com/photos/michaelfoleyphotography/4978157199/ 2



Computing beyond the edge

Battery-free
Energy Harvesting
Intermittently Powered

P

v4 %
800

—__

Harvester Energy
Buffer

//, compute i\\
sense radio
N /
MCU &
peripherals



25
3

20
/

15

Time(s)

10

' BuiBieyo
1 Jo pasamod
-+ LN

A

c

Vm
(A)abe3joN
12)1ng Abisu3z

start). = = = =

V.

No batteries —> intermittent power supply




Outline

» Batteryless Device Basics

» Keeping Persistent Memory Consistent
» Task-Based Programming Models

* Asynchronous Energy Demands

» Capybara Platform

e SuMmary



Outline

» Batteryless Device Basics

» Keeping Persistent Memory Consistent
» Task-Based Programming Models

* Asynchronous Energy Demands

» Capybara Platform

e Summary



Numerous batteryless platforms exist

1111111

Harvester Bluetooth

:

..............

olar and RFID

Harvesters (Bac

Ls

Peripherals

Capybara

WISP

Flicker
University of Washington Clemson University



Batteryless devices typically have a hybrid
memory hierarchy

Non-Volatile-
retained on reboot

~256KB ‘

~ = [

000 ) T

Volatile- cleared
on reboot



Programming a batteryless sensor

=14 :
o g APybara v2.0

Abstract Lab
ER nC BL 2018

Mtpe s inerm tent.

ik

LR () r'§ P5.3
P73 (@ l\ﬁfsT

N N N B B R T
P26 (@

S N N N R T e e
— F r r 5 5 T

. . <
.3 1 - P43 (] D) ra.2

Superrap C1
Is¢ 3 harge

.
01 ,[
rnnnnonnw =

| L

Capybara

Programmer




Programs may not finish

Z )

int process() {
count++;

transmit (avg) ;

buf[count] = accel();
avg = sum(buf) /count;

count++
buf[count]

Power fail

} .
= accel ()
()
€
=
C
o
5
(&)
()]
x
L
v

10



Programs may not finish

int process() {
count++;
buf[count] = accel();
avg = sum(buf) /count;
transmit (avg) ;
L /
count++
buf[count] = accel()
Power fail o
£
|_
C
count++; ‘8
buf[count] = accel() §
Power fail 35
/\/\/\/\




Programs may not finish

int process() {
count++;
buf[count] =

= accel () ;
avg = sum(buf) /count;
transmit (avg) ;

} /

count++
buf[count] = accel()
Power fail o

£

|_

C
count++; 2
buf[count] = accel() §
Power fail 35

Need to latch execution
state periodically!

12



Programs may not finish

int process() {
count++;
buf[count] = accel(); Execute with
avg = sum(buf) /count; .
transmit (avg) ; checkpomts
i /
count++ count++
buf[count] = accel() Checkpoint
Power fail o buf[count] = accel()
£ Power fail
— /\/\/\/\
C
count++; 2
buf[count] = accel() g
Power fail 35
v

Need to latch execution
state periodically!

13



Programs may not finish

int process() {
count++;
buf[count] = accel(); Execute With
avg = sum(buf) /count; .
transmit (avg) ; checkpomts
i /
count++ count++
buf[count] = accel() Checkpoint
Power fail o buf[count] = accel()
£ ,EﬂfifﬂLv//A\\//""/A\\\
|_
S
count++; = buf[count] = accel()
buf[count] = accel() D avg = sum(buf)/count
Power fail " Checkpoint

/\/\/\/\ transmit-
W\/\

Need to latch execution
state periodically!

14



Programs may not finish

int process() {
count++;
buf[count] = accel(); Execute With
avg = sum(buf) /count; .
transmit (avg) ; checkpomts
i -
count++ count++
buf[count] = accel() Checkpoint
Power fail o buf[count] = accel()
E Power fail
= /\/\/\/\
S
count++; = buf[count] = accel()
buf[count] = accel() D avg = sum(buf)/count
Power fail i Checkpoint
/\/\/\/\ transmit-
%\/\
v
. transmit (avg)
Need to latch execution | . .

state periodically!

15



Checkpointing allows the program to

retain progress

Registers

Volatile
Stack

Checkpointed | Checkpointed
Registers 1 Registers 2
Checkpointed | Checkpointed
Stack 1 Stack 2

Non-Volatile Memory

This strategy does
not manage non-
volatile memory
correctly!

16



Outline

» Keeping Persistent Memory Consistent



Memory can become inconsistent

I

NV Memory

int process() {
count++;

buf[count] = accel()
avg = sum(buf) /count;

transmit (avg) ;

count O count++

buf | 71010 buf[count]

= accel()

Execution Time

18



Memory can become inconsistent

Z )

NV Memory

int process() {
count++;

buf[count] = accel()
avg = sum(buf) /count;

transmit (avg) ;

o _—

count | 1

buf | 71010

count++
Power fail

buf[count] = accel()

Execution Time

19



Memory can become inconsistent

Cg;::::g int process() {
count++;

buf[count] = accel()
avg = sum(buf) /count;
transmit (avg) ;

} /
NV Memory
count 1 count++
Power fail w
buf | 71010 buf[count] = accel() E
[
i)
3
¢
count | 2 count++; i
buf[count] = accel()
buf [ 71019
v

Need to track or prevent
potentially inconsistent variables!

20



Memory can become inconsistent

Z )

int process() {
count++;
buf[count] = accel();
avg = sum(buf) /count;
transmit (avg) ;

} Make working copy of

NV Memory
count 1 count++ ;
Power fail o coun
buf | 71010 buf[count] = accel() E buf
5 ’
3
¢
count | 2 count++; i
buf[count] = accel()
buf [ 71019
v

Need to track or prevent
potentially inconsistent variables!

inconsistent variables!

count++

Power fail
buf[count] = accel()

21



Memory can become inconsistent

Z )

int process() {
count++;
buf[count] = accel();
avg = sum(buf) /count;
transmit (avg) ;

} Make working copy of
inconsistent variables!

NV Memory
count | 1 count++ count] 1 count++
Power fail ) Power fail
buf | 7 10 buf[count] = accel() E buf buf[count] = accel()
5 71010 /\/\/\/\
5
O .
o count | 1 count++;
count | 2 count++; w buf [count] = accel()
buf[count] = accel() buf
v

Need to track or prevent
potentially inconsistent variables!

22



Common Intermittent Execution Models

Checkpoints Tasks

int main() {
temp = count + 1;

task sample() {
count++;

All-or-nothing buf[count] = accel();

count = temp; task transition (compute)
buf[count] = accel();

avg = sum(buf) /count;

semantics,

Voltage,
time,

logging for
NVM accesses f

task compute() {
avg = sum(buf) /count;
transmit (avg) ;

program
structure,
WARs

transmit (avg) ;

Easy to use, but

arbitrarily placed
checkpoints can break
1/0

More programmer involvement,
but much more control

B. Ransford, J. Sorber, and K. Fu. Mementos: System support for long-running compdtation on R g devices. ASF p 1.

D, Balsarhd; HOEREISTE: Rk Y, TR SHNoB, Y RIS itier tyRRuered batteryless sensors. Sensys, 2017.
Hibernugt Sutgining S BIRAaion sl oty SrS SRR % B e SN AR RSV kel etekShe 3Gims. pLDI, 2015,

J. Van Der Woude and M. Hicks. Intermittent computation without hardware support or programmer intervention. OSDI, 2016.

23




Outline

» Batteryless Device Basics

» Keeping Persistent Memory Consistent
* Task-Based Programming Models

* Asynchronous Energy Demands

» Capybara Platform

* More Challenges

e Summary



Code can be decomposed into tasks

main () {
count++ sample
buf[count] = accel ()
avg = sum(buf) /count average
transmit

radio transmit (avg)

J



Task control flow is explicit

task sense () {

count++ task test () {
buf[count] = accel() outlier = test (buf, count)
ext task tesD if (outlier)
J <next task radio_alert>
else
<:§§xE=Eask sense >
task radio alert () { }

radio transmit (“talert”)
<next task sense >

J

26 Alexei Colin and Brandon Lucia. Chain: Tasks and
Channels for Reliable Intermittent Programs.
OOPSLA. 2016.




Data is transferred using shared variables

TASK [eetimmdtet
N Only access that the runtime
TASK— systems needs to handle

task so/ =) {

TS (count) ++

TS (buf) [TS(count)] = accel ()
next task test

task test () {

outlier = test (TS (buf), TS (count))
1if (outlier)
} next task radio alert
else

next task sense

}

task radio alert () {
radio transmit (“alert”)
next_task sense

}

Kiwan Maeng and Brandon Lucia. Alpaca: Intermittent
Execution Without Checkpoints. OOPSLA. 2017.




Tasks provide atomic semantics

\ 4

task sense () {

TS (count) ++

TS (buf) [TS(count)] = accel (
Tnext task test .

v

Kiwan Maeng and Brandon Lucia. Alpaca: Intermittent
Execution Without Checkpoints. OOPSLA. 2017.




Outline

» Batteryless Device Basics

» Keeping Persistent Memory Consistent
» Task-Based Programming Models

* Asynchronous Energy Demands

» Capybara Platform

e Summary



Fixed energy buffers are fixed

FAILED packet
A sample | | sample | [ sample transmission
8 m
o)
=
Buffer Capacity = C 9
2 L h
= ong recnarge
a A | Back-to-Back 'gt | 9 Packet
8 Samples interva transmitted
m E
-
Ll

Buffer Capacity = 3C

Time 30



Applications may have conflicting constraints

« Temporal constraints
« Energy capacity constraints

while (light > CLOSE OBJECT) ({
light = read photoresistor();

}

BOTH gesture = capture_gesture();

Capacity radio transmit (gesture);
constraint }




Outline

» Batteryless Device Basics

» Keeping Persistent Memory Consistent
» Task-Based Programming Models

* Asynchronous Energy Demands

» Capybara Platform

e Summary



Capybara relies on HW-SW codesign

* Hardware

* Flexible power system

« Reconfigurable capacitor bank
 Software

* Runtime to manage state changes

* Declarative interface for energy modes



Capybara relies on HW-SW codesign

» Reconfigurable capacitor bank

* Declarative interface for energy modes



The reconfigurable capacitor bank is
controlled with software

Vdd [ 1981
Switch N 3
_/ g
8
J_ Capacitor o
T Bank N e
: — P | ]
H = c0Q19 18 17 -
Switch 1 %1:3135 %1; g:: fo0se ’
. o2 011 1008 :
' 1
Capacitor
Bank 1
GPIO -

MCU




Energy modes map to temporal and
capacity constraints

while (light > CLOSE OBJECT) ({
light = read photoresistor();

}

BOTH gesture = capture_gesture();

Capacity radio transmit (gesture);
constraint }




Tasks are annotated with their energy mode
exe@reburs t=HIGH : bur st@

task sample () { <
light = read photoresistor ()

if (light < CLOSE OBJECT)
TRANSITION TO (task gesture) o
else
TRANSITION TO(task s ampT )

task gesture ()
TS (gesture) = get gesture()
1f (TS (gesture) > NONE)
TRANSITION TO (task send)
else
TRANSITION TO (task sample)

}

}

(Confiq)exedSMED )

task send () { Buffer Configuration
radio send (TS (gesture))

TRANSITION TO(task sample)
} N

37



Capybara improves event detection

1.0 Powered
Fixed Capacity

3 B Capybara
~ 0.8
@)
Q.
¥
9 0.6
c
)
i
«— 04
@)
c
=
g 0.2
L

0.0

Temperature Gesture Correlated

Monitor Recognition Sensing 18



Programming models simplify handling
the physical world beyond the edge

* Intermittent execution can cause persistent memory to become
Inconsistent

* Task-based programming models provide forward progress and
memory consistency

* Fixed-size energy buffers preclude reactive applications with energy
capacity constraints

* Capybara’s hardware/software codesign enables reactive applications



