Carnegie Mellon

o VELCOME ‘/' | 10

L\ L e ——_

15-213™
el s sive

ol

— i) \§ -
vl D S o A g et

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Network Programming: Part |

15-213/18-213/14-513/15-513/18-613:
Introduction to Computer Systems
22" Lecture, November 7, 2019

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

N\

UTAH

UCSs UCLA

The ARPANET in December 1969

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

PDP-10

UTAH e MIT
IMP IMP

G(%ouv
IMP

CASE

IMP

- POP-10

S |

| | CARNEGIE
HARARD - IMP

e

SR/
@i {vp
bcss| STANFORD so¢ @
X
IMP| | |IMP | |IMP
YUCLA RAND GEA
XDS
sioma-2— IMP IMP IMP
GroaD B

ARPA NET, DECEMBER 1970

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IMP

PDP-10

Carnegie Mellon

CASE ’
1}
[cannecit
ILLINOIS -

BURROUGHS

MITRE.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

ARPANET LOGICAL MAP, MARCH 1977

Carnegie Mello

‘ - DATA - - ~
[For-10] THCTE00 [o0p-11] PDP-10 computer] LPDP-!! | [DEC-2050] | PLURIBUS|
- CDC6600 [PoP-10] - 3
PDP-10 iMOFFETT 0 . ILLINOIS WPAFB POP-10 POP-10 IPDP 0
PLI >— B o "%
MIT6 CCA RCCS| RcC
L H6180
poP-1t] [{POP-ITF—4 H68/80 $P5-41
HAWAIL | amEsis IP—D,?I SRI2 FOP-TT T} MIT 44 POP-11
AME-SJIS SRI51 OP.10 %%c
PDP-10 fpop- 1] |[FoP-11] — ECLIPSE] [DEC1080) e
0]\ Jocuso LR CDC6600
[POP-11] ANL oMU LINCOLN JBBN 40
NQOVA -800 N RADC BBN 30 PDP-11
{POP-10] PARC-MAXC2 cDC7600
: f-6180) pEC
TANFORD A\ SUMEX TYMSHARE > PDOP-1 CDC6600
> S 0 VARIANTD 5PS-41 DEC-1080 SNCGOIAT
P POP-T0] | e PDPHARVAR "~PDP-11
-1
PDP-10 e GWC [poOP-1] N NYU
POP-1 SPs-41 ﬁ £BeE590 FOP-T1 PDP- 10 UNIVAC-1108
n PO SCRL Qpocs PDP-10 RUTGERS
UM: 7Cx:08 ; BELVOIR & PDP-1
POP- 11 /Pop 1] 360743 YADCEC (55577 ABERDEEN
PLI usC Sbac NORSAR
T 360/9) p 360/40 360740
NUC PDP-11 PDP-10 360740 NSA
ARPA
NELC POP-1) PLURIBUS ITR PDP-1I
FPSAP-1208 PDP-10
- RAND -
POP-11 370-158 P0p - 11] [PoP-15] POP-10
DEC-2040) {lPop-10 PDP-11 3:70_:) XGP
P-1
PDP-10 XGP [WPOP-11 | [Poe-n}
POP-10 Is15271PDP-10 O O -l GEC 4080
1S122 AFWL TEXAS GUNTER EGLIN PENTAGON IcL 470
PDP-11 v/POP-1| C0C6400
O IMP A PLURIBUS IMP CDC6600 B55C0 CDC 6600
O TIP Aa SATELLITE CIRCUIT . cDC 7600

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE,NO CLAIM CAN BE MADE FOR ITS ACCURACY)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

§Average

Carnegie Mellon

A Map of 460 Billion Device Connections to
the Internet collected by the Carna Botnet

W, &3
N
T,
W &
sy o =
e i 4
& 5 ¥ & ey
= N X &-.'5'\3‘, \
PN B
Oy

Relative IPv4 utilization observed using ICMP Ping requests Source: Carna Botnet

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Arctic Ocean Arctic TeleGeography

Submarine Cable Map

The Submarine Cable Map is a free resource from
TeleGeography. Data contained in this map is drawn from
the Global Bandwidth Research Service and is updated
on a regular basis.

To learn more about TeleGeography or this map please

— \ o S click here.
\\ £ Qo O Greenland

Finland

Feedback [[github

Russia " . [
7 Q Se
Seattle, WA, United - 4
X -

States

Submarine Cable List

Seattle, WA, United States

Mongolia

& f 2 : United States
g 5~/ I Pacific ' [Email link
l_Ocean ==
‘—ﬁ Cables
Xico . d
& & 5 o Arctic Fibre
Niger Sudan [\
‘ Chad
D \ <Ethi
R
ya-

_______ i) — T T Y) s
S e . ..ﬂﬁ R Cong?)*Ken a
0 e n 4 — (3

\Tanz{}

2
) Botswana

Australia

Atlantic o
Ocean SotiYAfricad |

Southern
Last updated on Naveraben 2, 2015

Terms of Use

All content © 2015 PriMetrica, Inc.

Google

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

A Client-Server Transaction

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

1. Client sends request

Client) Server

Resource

process / process
4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Hardware Organization of a Network Host

CPU chip
register file
: { ALU
iI system bus
r'd
M S 1/0
\,7 bridge

)

memory bus

l

main
memory

Expansion slots

<

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

<

USB

controller

T

T

<

graphics
adapter

mouse keyboard

l

monitor

1/0 bus {}

H

>

\/

disk
controller

network
adapter

A

A 4

I

[network]

10

Carnegie Mellon

Computer Networks

m A network is a hierarchical system of boxes and wires
organized by geographical proximity
= BAN (Body Area Network) spans devices carried / worn on body
= SAN* (System Area Network) spans cluster or machine room
= Switched Ethernet, Quadrics QSW, ...
= LAN (Local Area Network) spans a building or campus
= Ethernet is most prominent example
= WAN (Wide Area Network) spans country or world
= Typically high-speed point-to-point phone lines

m An internetwork (internet) is an interconnected set of
networks

"= The Global IP Internet (uppercase
of an internet (lowercase “i”)

IIIH

) is the most famous example

m Let’s see how an internet is built from the ground up
* Not to be confused with a Storage Area Network

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Lowest Level: Ethernet Segment

host host host

100 Mb/s m 100 Mb/s

m Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

port

m Spans room or floor in a building

m Operation
= Each Ethernet adapter has a unique 48-bit address (MAC address)
= E.g.,00:16:ea:e3:54:e6
" Hosts send bits to any other host in chunks called frames

= Hub slavishly copies each bit from each port to every other port

= Every host sees every bit
[Note: Hubs are obsolete. Bridges (switches, routers) became cheap enough to replace them]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Next Level: Bridged Ethernet Segment

A B
host host host host host
X
1 100 Mb/s | ,... | 100 Mb/s
hub lbrldge| hub
1 Gb/s
host host
100 Mb/s (.) 100 Mb/s (_j
| hlEJ | bridge | l_hub
Y
host host host host host
C

m Spans building or campus

m Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Conceptual View of LANs

m For simplicity, hubs, bridges, and wires are often shown as a
collection of hosts attached to a single wire:

host | | host |***| host

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Next Level: internets

Carnegie Mellon

m Multiple incompatible LANs can be physically connected by

specialized computers called routers

m The connected networks are called an internet (lower case)

host

host

host

host

host

host

LAN 1 and LAN 2 might be completely different, totally incompatible
(e.qg., Ethernet, Fibre Channel, 802.11%*, T1-links, DSL, ...)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15

Carnegie Mellon

Logical Structure of an internet

m Ad hoc interconnection of networks
" No particular topology
= Vastly different router & link capacities

m Send packets from source to destination by hopping through
networks
= Router forms bridge from one network to another
= Different packets may take different routes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

The Notion of an internet Protocol

m How is it possible to send bits across incompatible LANs
and WANs?

m Solution: protocol software running on each host and

router

® Protocol is a set of rules that governs how hosts and routers should
cooperate when they transfer data from network to network.

= Smooths out the differences between the different networks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

What Does an internet Protocol Do?

m Provides a naming scheme
= Aninternet protocol defines a uniform format for host addresses

= Each host (and router) is assigned at least one of these internet
addresses that uniquely identifies it

m Provides a delivery mechanism
= Aninternet protocol defines a standard transfer unit (packet)
= Packet consists of header and payload

= Header: contains info such as packet size, source and destination
addresses

= Payload: contains data bits sent from source host

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Transferring internet Data Via Encapsulation

LAN1 Host A Host B LANZ2
client server
(1) | data (8) | data
protocol protocol
internet packet software software
(2) data PH | FH1 (7) data PH | FH2
LAN1 fra‘n;e -
LAN1 LAN2
adapter adapter
Router 5
(3) data PH | FH1 (6) data PH | FH2
LAN1 LAN2
adapter adapter
7 LAN2 frame
(4) data PH | FH1 data PH | FH2 | (5)
PH: internet packet header protocol
FH: LAN frame header software

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Ihird Edition 19

Carnegie Mellon

Other Issues

m We are glossing over a number of important questions:

= What if different networks have different maximum frame sizes?
(segmentation)

" How do routers know where to forward frames?

= How are routers informed when the network topology changes?
= What if packets get lost?

m These (and other) questions are addressed by the area of
systems known as computer networking

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Global IP Internet (upper case)

m Most famous example of an internet

m Based on the TCP/IP protocol family
= |P (Internet Protocol)

= Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

= UDP (Unreliable Datagram Protocol)

= Uses IP to provide unreliable datagram delivery from
process-to-process

= TCP (Transmission Control Protocol)

= Uses IP to provide reliable byte streams from process-to-process
over connections

m Accessed via a mix of Unix file I/O and functions from the
sockets interface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Hardware and Software Organization
of an Internet Application

Internet client host Internet server host
Client User code Server
Sockets interface ¥ ¥
(system calls) v Y
TCP/IP Kernel code TCP/IP
Hardware interface 7 5
(interrupts) v Y
Network | Hardware Network
adapter | and firmware adapter
[Global IP Internet]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit /P addresses
= 128.2.203.179
= 127.0.0.1 (always localhost)

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names
= 128.2.217.3 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Aside: IPv4 and IPv6

m The original Internet Protocol, with its 32-bit addresses, is
known as Internet Protocol Version 4 (IPv4)

m 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
" |ntended as the successor to |IPv4

m Majority of Internet traffic still carried by IPv4

IPv6 traffic at Google

m We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

(1) IP Addresses

m 32-bit IP addresses are stored in an /P address struct

= |P addresses are always stored in memory in network byte order
(big-endian byte order)

"= True in general for any integer transferred in a packet header from one
machine to another.

= E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {
uint32 t s_addr; /* network byte order (big-endian) */

};

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Dotted Decimal Notation

m By convention, each byte in a 32-bit IP address is represented
by its decimal value and separated by a period
= |P address: 0x8002C2F2 = 128.2. .242

m Use getaddrinfo and getnameinfo functions (described
later) to convert between IP addresses and dotted decimal
format.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

(2) Internet Domain Names

unnamed root
.net /.edu\ 8oV .com First-level domain names
mit cmu berkeley amazon Second-level domain names
cs ece WWW Third-level domain names
/ \ 54.230.48.28
ics pdl
whaleshark WWW

128.2.210.175 128.2.131.66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

.space .store .stream .studio
.study .style .supplies .supply
.support surf .surgery .sydney
.systems taipei tattoo tax

taxi team tech technology
tennis theater theatre tienda

tips tires tirol today
tokyo tools top tours

town toys trade trading
training tube .university .uno
vacations vegas ventures versicherung
vet viajes video villas

vin vip vision Vlaanderen
vodka vote voting voto
voyage wales .wang watch
webcam website wed wedding
whoswho wien Wwiki win

wine work works .world

wif RS FEEh .OHNaitH
.canT .01 .opr R=evg
NCE] MAg PR AR Diz3s4

ARl Xyz yoga yokohama
.zone

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Domain Naming System (DNS)

m The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed database called
DNS

m Conceptually, programmers can view the DNS database as a
collection of millions of host entries.

® Each host entry defines the mapping between a set of domain names and IP
addresses.

" |n a mathematical sense, a host entry is an equivalence class of domain
names and IP addresses.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Properties of DNS Mappings

m Can explore properties of DNS mappings using nslookup

= (Output edited for brevity)

m Each host has a locally defined domain name 1localhost
which always maps to the loopback address 127 .0.0.1

linux> nslookup localhost
Address: 127.0.0.1

m Use hostname to determine real domain name of local host:

linux> hostname
whaleshark.ics.cs.cmu.edu

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Properties of DNS Mappings (cont)

m Simple case: one-to-one mapping between domain name and IP
address:

linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

m Multiple domain names mapped to the same IP address:

linux> nslookup cs.mit.edu
Address: 18.62.1.6

linux> nslookup eecs.mit.edu
Address: 18.62.1.6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Properties of DNS Mappings (cont)

m Multiple domain names mapped to multiple IP addresses:

linux> nslookup www.twitter.com
Address: 104.244.42.65

Address: 104.244.42.129
Address: 104.244.42.193
Address: 104.244.42.1

linux> nslookup www.twitter.com
Address: 104.244.42.129
Address: 104.244.42.65

Address: 104.244.42.193
Address: 104.244.42.1

m Some valid domain names don’t map to any IP address:

linux> nslookup ics.cs.cmu.edu

(No Address given)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

(3) Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections. Each connection is:

= Point-to-point: connects a pair of processes.
" Full-duplex: data can flow in both directions at the same time,

= Reliable: stream of bytes sent by the source is eventually received by
the destination in the same order it was sent.

m A socket is an endpoint of a connection
= Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically by client kernel when client
makes a connection request.

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Well-known Service Names and Ports

m Popular services have permanently assigned well-known
ports and corresponding well-known service names:
= echoservers: echo 7
= ftpservers: ftp21
= sshservers: ssh 22
= email servers: smtp 25
= Web servers: http 80

m Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux

machine.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Anatomy of a Connection

m A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)

" (cliaddr:cliport, servaddr:servport)

Client socket address Server socket address
128.2.194.242:51213 :80
/ \ Server

P

< »

Connection socket pair (port 80)
(128.2.194.242:51213, :80)
Client host address Server host address
128.2.194.242
51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Kernel

v

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client

Web server
(port 80)

v

Kernel

Echo server
(port 7)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Sockets Interface

m Set of system-level functions used in conjunction with
Unix I/0 to build network applications.

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

m Available on all modern systems
= Unix variants, Windows, OS X, 10S, Android, ARM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Sockets

m What is a socket?
= To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix 1/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

- o
< »

clientfd serverfd

m The main distinction between regular file 1/0 and socket
1/0 is how the application “opens” the socket descriptors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

https://canvas.cmu.edu/courses/10968

Carnegie Mellon

Socket Programming Example

m Echo server and client

m Server
= Accepts connection request
= Repeats back lines as they are typed

m Client
= Requests connection to server
= Repeatedly:
= Read line from terminal
= Send to server
= Read reply from server
= Print line to terminal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Echo Server/Client Session Example

Client

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (A)
This line is being echoed (B)
This line is being echoed

This one is, too (C)
This one is, too

D

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (D)
This one is a new connection (E)
This one is a new connection

D

Server
whaleshark: ./echoserveri 6616
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707) (A)
server received 26 bytes (B)
server received 17 bytes (C)
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708) (D)
server received 29 bytes (E)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

2. Start client 1. Start server

Client Server EChO

Server
+ Client

open listenfd

open_clientfd St r u Ct u re

Connectign l Await connection
request request from client
":7 """"" K"’ accept <
4 v v 3. Exchange\
| terminal read ‘ ket d le
Client / | socket write | Socket read data
Server l l
Session socket read ;
.) < socket write
\\» terminal write <//

close = |---H4-—------ socket read

5. Drop client

4. Disconnect client

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

2. Start client 1. Start server

Client Server EChO

Server
+ Client

open listenfd

open_clientfd St r u Ct u re

Connectiagn l Await connection
request request from client
P) """"" K‘ = accept <
4 v v 3. Exchange\
fgets o .
Client / > rio writen »rio readlinebi« data
Server l l
Session rio readlineb | . .
- fputs < rio_writen
close = f---41- EOF ___ rio readlineb

5. Drop client

4. Disconnect client

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Recall: Unbuffered RIO Input/Output

m Same interface as Unix read and write
m Especially useful for transferring data on network sockets

#include "csapp.h"

ssize t rio readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_ readn only), -1 on error

" rio readn returnsshort countonly if it encounters EOF
= Only use it when you know how many bytes to read
" rio writen never returnsa short count

" Callstorio readnand rio_ writen can be interleaved arbitrarily on
the same descriptor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Recall: Buffered RIO Input Functions

m Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include "csapp.h"
void rio readinitb(rio t *rp, int £d);

ssize t rio readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readlineb reads a text/ine of up to maxlen bytes from file
f£d and stores the line in usrbuf
= Especially useful for reading text lines from network sockets
= Stopping conditions
= maxlen bytes read
= EOF encountered
= Newline (‘\n’) encountered

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Echo Client: Main Routine

#include "csapp.h"

int main(int argc, char **argv)

{
int clientfd;
char *host, *port, buf[MAXLINE];
rio t rio;

host = argv[1l];
port = argv[2];

clientfd = Open clientfd(host, port);
Rio readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio writen(clientfd, buf, strlen(buf));
Rio readlineb(&rio, buf, MAXLINE) ;
Fputs (buf, stdout);
}
Close(clientfd) ;
exit (0) ;
} echoclient.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

2. Start client 1. Start server

Client Server EChO

Server
+ Client

open listenfd

open_clientfd St r u Ct u re

Connectiagn l Await connection
request request from client
P) """"" K‘ = accept <
4 v v 3. Exchange\
fgets o .
Client / > rio writen »rio readlinebi« data
Server l l
Session rio readlineb | . .
- fputs < rio_writen
close = f---41- EOF ___ rio readlineb

5. Drop client

4. Disconnect client

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Iterative Echo Server: Main Routine

#include "csapp.h”
void echo(int connfd) ;

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr; /* Enough room for any addr */
char client hostname [MAXLINE], client port[MAXLINE] ;

listenfd = Open listenfd(argv[1l])

while (1) {
clientlen = sizeof (struct sockaddr storage); /* Important! */
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
Getnameinfo ((SA *) &clientaddr, clientlen,

client hostname, MAXLINE, client port, MAXLINE, O0);

printf ("Connected to (%s, %s)\n", client hostname, client port);
echo (connfd) ;
Close (connfd) ;

}
exit(0) ;

} echoserveri.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Echo Server: echo function

m The server uses RIO to read and echo text lines until EOF

(end-of-file) condition is encountered.
= EOF condition caused by client calling close (client£d)

void echo(int connfd)

{
size t n;
char buf [MAXLINE] ;
rio_t rio;

Rio readinitb(&rio, connfd) ;

while((n = Rio readlineb (&rio, buf, MAXLINE)) !'= 0) {
printf ("server received %d bytes\n", (int)n);

Rio writen (connfd, buf, n);

} echo.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Socket Address Structures

m Generic socket address:
= For address arguments to connect, bind, and accept (next lecture)

= Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed

= For casting convenience, we adopt the Stevens convention:
typedef struct sockaddr SA;

struct sockaddr {
uintlé t sa family; /* Protocol family */
char sa data[l4]; /* Address data */

};

sa_family

~
Family Specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Socket Address Structures

m Internet (IPv4) specific socket address:

" Mustcast (struct sockaddr in *)to(struct sockaddr *)
for functions that take socket address arguments.

struct sockaddr in {

uintl6é t sin family; /* Protocol family (always AF_ INET) */
uintlé t sin port; /* Port num in network byte order */
struct in addr sin_addr; /* IP addr in network byte order */

unsigned char sin zero[8]; /* Pad to sizeof(struct sockaddr) */

sin_port sin_addr

AF INET o(o0o|/0|0|O0O|O0O]O0]|O0

sa_family \ .

Family Specific

sin family

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Host and Service Conversion: getaddrinfo

m getaddrinfo is the modern way to convert string

representations of hostnames, host addresses, ports, and
service names to socket address structures.
= Replaces obsolete gethostbyname and getservbyname funcs.

m Advantages:
= Reentrant (can be safely used by threaded programs).

= Allows us to write portable protocol-independent code
= Works with both IPv4 and IPv6

m Disadvantages
= Somewhat complex
= Fortunately, a small number of usage patterns suffice in most cases.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Host and Service Conversion: getaddrinfo

int getaddrinfo (const char *host, /* Hostname or address */
const char *service, /* Port or service name */
const struct addrinfo *hints,/* Input parameters */
struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai strerror(int errcode); /* Return error msg */

m Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

m Helper functions:
" freeadderinfo frees the entire linked list.

- gai_strerror converts error code to an error message.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Linked List Returned by getaddrinfo

addrinfo structs

result

Socket address structs

al canonname

ai_addr

ai_pext

NULL
ai_addr

ai next

NULL
ai_addr
NULL

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

addrinfo Struct

struct addrinfo {
int ai flags; /* Hints argument flags */
int ai family; /* First arg to socket function */
int ai socktype; /* Second arg to socket function */
int ai protocol; /* Third arg to socket function */
char *ai canonname; /* Canonical host name */
size t ai addrlen; /* Size of ai_addr struct */
struct sockaddr *ai addr; /* Ptr to socket address structure */
struct addrinfo *ai next; /* Ptr to next item in linked list */
}i

m Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

m Also points to a socket address struct that can be passed
directly to connect and bind functions.

(socket, connect, bind to be discussed next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Host and Service Conversion: getnameinfo

m getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
= Replaces obsolete gethostbyaddr and getservbyport funcs.
= Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen t salen, /* In: socket addr */
char *host, size t hostlen, /* Out: host */
char *serv, size t servlen, /* Out: service */
int flags); /* optional flags */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)

{
struct addrinfo *p, *listp, hints;
char buf [MAXLINE] ;
int rc, flags;

/* Get a list of addrinfo records */
memset (&hints, 0, sizeof (struct addrinfo));

// hints.ai family = AF INET; /* IPv4 only */

hints.ai socktype = SOCK STREAM; /* Connections only */

if ((rc = getaddrinfo(argv[l], NULL, &hints, &listp)) '= 0) {
fprintf (stderr, "getaddrinfo error: %$s\n", gai_ strerror(rc));
exit(1l);

}

hostinfo.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Conversion Example (cont)

/* Walk the list and display each IP address */
flags = NI_NUMERICHOST; /* Display address instead of name */
for (p = listp; p; p = p—>ai_next) {
Getnameinfo (p->ai_addr, p->ai addrlen,
buf, MAXLINE, NULL, 0, flags);
printf ("%$s\n", buf);
}

/* Clean up */
Freeaddrinfo (1listp) ;

exit (0);
} hostinfo.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

whaleshark> ./hostinfo google.com
172.217.15.110
2607:£8b0:4004:802::200e

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Next time

m Using getaddrinfo for host and service conversion
m Writing clients and servers
m Writing Web servers!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Basic Internet Components

m Internet backbone:

= collection of routers (nationwide or worldwide) connected by high-speed
point-to-point networks

m Internet Exchange Points (IXP):

= router that connects multiple backbones (often referred to as peers)
= Also called Network Access Points (NAP)

m Regional networks:

= smaller backbones that cover smaller geographical areas
(e.g., cities or states)

m Point of presence (POP):

" machine that is connected to the Internet

m Internet Service Providers (ISPs):

= provide dial-up or direct access to POPs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Internet Connection Hierarchy

Private

”peering” IXP IXP IXP

agreements

between Colocation
two backbone sites
companies Backbone =---- Backbone Backbone Backbone
. / / \\ / \W

POP POP POP POP POP
Regional net ISP Big Business
POP POP POP POP

Cable
DSL
T T /modem \

ISP (for individuals) Small Business Pgh employee DC employee

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

IP Address Structure
m IP (V4) Address space divided into classes:
0123 8 16 24 31
ClassA |o| NetID Host ID
ClassB 1|0 Net ID Host ID
ClassC [1/1]0 Net ID Host ID
ClassD |1]1{1{0| Multicast address
ClassE |1{1{1|1| Reserved for experiments

m Network ID Written in form w.x.y.z/n

" n =number of bits in host address
= E.g., CMU written as 128.2.0.0/16
= Class B address

m Unrouted (private) IP addresses:
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Evolution of Internet

m Original Idea
= Every node on Internet would have unique IP address
= Everyone would be able to talk directly to everyone
= No secrecy or authentication
= Messages visible to routers and hosts on same LAN
= Possible to forge source field in packet header

m Shortcomings
" There aren't enough IP addresses available
= Don't want everyone to have access or knowledge of all other hosts
= Security issues mandate secrecy & authentication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Evolution of Internet: Naming

m Dynamic address assighment
= Most hosts don't need to have known address
= Only those functioning as servers
= DHCP (Dynamic Host Configuration Protocol)
= Local ISP assigns address for temporary use

m Example:
= Laptop at CMU (wired connection)
= |P address 128.2.213.29 (bryant-tp4.cs.cmu. edu)
= Assigned statically
= Laptop at home
= |P address 192.168.1.5
= Only valid within home network

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Evolution of Internet: Firewalls

176.3.3.3

—

216.99.99.99

Corporation X

Internet

m Firewalls

" Hides organizations nodes from rest of Internet

= Use local IP addresses within organization

" For external service, provides proxy service
1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

