
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System-Level I/O

15-213/18-213/14-513/15-513/18-163:
Introduction to Computer Systems
21st Lecture, November 5, 2019

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Unix I/O
¢ Metadata, sharing, and redirection
¢ Standard I/O
¢ RIO (robust I/O) package
¢ Closing remarks

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Unix I/O and C Standard I/O
¢ Two sets: system-level and C level
¢ Robust I/O (RIO): 15-213 special wrappers

good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview
¢ A Linux file is a sequence of m bytes:

§ B0 , B1 , , Bk , , Bm-1

¢ Cool fact: All I/O devices are represented as files:
§ /dev/sda2 (/usr disk partition)
§ /dev/tty2 (terminal)

¢ Even the kernel is represented as a file:
§ /boot/vmlinuz-3.13.0-55-generic (kernel image)
§ /proc (kernel data structures)

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview
¢ Elegant mapping of files to devices allows kernel to export

simple interface called Unix I/O:
§ Opening and closing files

§ open()and close()
§ Reading and writing a file

§ read() and write()
§ Changing the current file position (seek)

§ indicates next offset into file to read or write
§ lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types
¢ Each file has a type indicating its role in the system

§ Regular file: Contains arbitrary data
§ Directory: Index for a related group of files
§ Socket: For communicating with a process on another machine

¢ Other file types beyond our scope
§ Named pipes (FIFOs)
§ Symbolic links
§ Character and block devices

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files
¢ A regular file contains arbitrary data
¢ Applications often distinguish between text files and binary

files
§ Text files are regular files with only ASCII or Unicode characters
§ Binary files are everything else

§ e.g., object files, JPEG images
§ Kernel doesn’t know the difference!

¢ Text file is sequence of text lines
§ Text line is sequence of chars terminated by newline char (‘\n’)

§ Newline is 0xa, same as ASCII line feed character (LF)
¢ End of line (EOL) indicators in other systems

§ Linux and Mac OS: ‘\n’ (0xa)
§ line feed (LF)

§ Windows and Internet protocols: ‘\r\n’ (0xd 0xa)
§ Carriage return (CR) followed by line feed (LF)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories
¢ Directory consists of an array of links

§ Each link maps a filename to a file

¢ Each directory contains at least two entries
§ . (dot) is a link to itself
§ .. (dot dot) is a link to the parent directory in the directory

hierarchy (next slide)

¢ Commands for manipulating directories
§ mkdir: create empty directory
§ ls: view directory contents
§ rmdir: delete empty directory

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directory Hierarchy
¢ All files are organized as a hierarchy anchored by root directory

named / (slash)

¢ Kernel maintains current working directory (cwd) for each process
§ Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames
¢ Locations of files in the hierarchy denoted by pathnames

§ Absolute pathname starts with ‘/’ and denotes path from root
§ /home/droh/hello.c

§ Relative pathname denotes path from current working directory
§ ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files
¢ Opening a file informs the kernel that you are getting ready to

access that file

¢ Returns a small identifying integer file descriptor
§ fd == -1 indicates that an error occurred

¢ Each process created by a Linux shell begins life with three
open files associated with a terminal:
§ 0: standard input (stdin)
§ 1: standard output (stdout)
§ 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files
¢ Closing a file informs the kernel that you are finished

accessing that file

¢ Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

¢ Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close");
exit(1);

}

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files
¢ Reading a file copies bytes from the current file position to

memory, and then updates file position

¢ Returns number of bytes read from file fd into buf
§ Return type ssize_t is signed integer
§ nbytes < 0 indicates that an error occurred
§ Short counts (nbytes < sizeof(buf)) are possible and are not

errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files
¢ Writing a file copies bytes from memory to the current file

position, and then updates current file position

¢ Returns number of bytes written from buf to file fd
§ nbytes < 0 indicates that an error occurred
§ As with reads, short counts are possible and are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");
exit(1);

}

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
¢ Copying file to stdout, one byte at a time

¢ Demo:
linux> strace ./showfile1_nobuf names.txt

#include "csapp.h"

int main(int argc, char *argv[])
{

char c;
int infd = STDIN_FILENO;
if (argc == 2) {

infd = Open(argv[1], O_RDONLY, 0);
}
while(Read(infd, &c, 1) != 0)

Write(STDOUT_FILENO, &c, 1);
exit(0);

} showfile1_nobuf.c

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts
¢ Short counts can occur in these situations:

§ Encountering (end-of-file) EOF on reads
§ Reading text lines from a terminal
§ Reading and writing network sockets

¢ Short counts never occur in these situations:
§ Reading from disk files (except for EOF)
§ Writing to disk files

¢ Best practice is to always allow for short counts.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Home-grown buffered I/O code
¢ Copying file to stdout, BUFSIZE bytes at a time

¢ Demo:

linux> strace ./showfile2_buf names.txt

#include "csapp.h"
#define BUFSIZE 64

int main(int argc, char *argv[])
{

char buf[BUFSIZE];
int infd = STDIN_FILENO;
if (argc == 2) {

infd = Open(argv[1], O_RDONLY, 0);
}
while((nread = Read(infd, buf, BUFSIZE)) != 0)

Write(STDOUT_FILENO, buf, nread);
exit(0);

} showfile2_buf.c

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Unix I/O
¢ Metadata, sharing, and redirection
¢ Standard I/O
¢ RIO (robust I/O) package
¢ Closing remarks

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
¢ Metadata is data about data, in this case file data
¢ Per-file metadata maintained by kernel

§ accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* Device */
ino_t st_ino; /* inode */
mode_t st_mode; /* Protection and file type */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device type (if inode device) */
off_t st_size; /* Total size, in bytes */
unsigned long st_blksize; /* Blocksize for filesystem I/O */
unsigned long st_blocks; /* Number of blocks allocated */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last modification */
time_t st_ctime; /* Time of last change */

};

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files
¢ Two descriptors referencing two distinct open files.

Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

File pos is maintained per open file

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
¢ Two distinct descriptors sharing the same disk file through

two distinct open file table entries
§ E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File A (disk)

File B (disk)

Different logical but same physical file

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
¢ A child process inherits its parent’s open files

§ Note: situation unchanged by exec functions (use fcntl to change)

¢ Before fork call:

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
¢ A child process inherits its parent’s open files
¢ After fork:

§ Child’s table same as parent’s, and +1 to each refcnt

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=2

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)
fd 0
fd 1
fd 2
fd 3
fd 4

Parent

Child

File is shared between processes

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection
¢ Question: How does a shell implement I/O redirection?

linux> ls > foo.txt

¢ Answer: By calling the dup2(oldfd, newfd) function
§ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example

¢ Step #1: open file to which stdout should be redirected

§ Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

[one table per process]

Open file table

[shared by all processes]

v-node table

[shared by all processes]

File pos

refcnt=1
...

stderr
stdout
stdin File access

...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)
¢ Step #2: call dup2(4,1)

§ cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=0

...

File pos
refcnt=2

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

Two descriptors point to the same file

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1, fd2, fd3;
char c1, c2, c3;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
fd2 = Open(fname, O_RDONLY, 0);
fd3 = Open(fname, O_RDONLY, 0);
Dup2(fd2, fd3);
Read(fd1, &c1, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
return 0;

} ffiles1.c

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1, fd2, fd3;
char c1, c2, c3;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
fd2 = Open(fname, O_RDONLY, 0);
fd3 = Open(fname, O_RDONLY, 0);
Dup2(fd2, fd3);
Read(fd1, &c1, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
return 0;

} ffiles1.c

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1;
int s = getpid() & 0x1;
char c1, c2;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
Read(fd1, &c1, 1);
if (fork()) { /* Parent */

sleep(s);
Read(fd1, &c2, 1);
printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */
sleep(1-s);
Read(fd1, &c2, 1);
printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}
return 0;

} ffiles2.c

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1;
int s = getpid() & 0x1;
char c1, c2;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
Read(fd1, &c1, 1);
if (fork()) { /* Parent */

sleep(s);
Read(fd1, &c2, 1);
printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */
sleep(1-s);
Read(fd1, &c2, 1);
printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}
return 0;

} ffiles2.c

Child: c1 = a, c2 = b
Parent: c1 = a, c2 = c

Parent: c1 = a, c2 = b
Child: c1 = a, c2 = c

Bonus: Which way does it go?

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

https://canvas.cmu.edu/courses/10968

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Unix I/O
¢ Metadata, sharing, and redirection
¢ Standard I/O
¢ RIO (robust I/O) package
¢ Closing remarks

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions
¢ The C standard library (libc.so) contains a collection of

higher-level standard I/O functions
§ Documented in Appendix B of K&R

¢ Examples of standard I/O functions:
§ Opening and closing files (fopen and fclose)
§ Reading and writing bytes (fread and fwrite)
§ Reading and writing text lines (fgets and fputs)
§ Formatted reading and writing (fscanf and fprintf)

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams
¢ Standard I/O models open files as streams

§ Abstraction for a file descriptor and a buffer in memory

¢ C programs begin life with three open streams
(defined in stdio.h)
§ stdin (standard input)
§ stdout (standard output)
§ stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation
¢ Applications often read/write one character at a time

§ getc, putc, ungetc
§ gets, fgets

§ Read line of text one character at a time, stopping at newline
¢ Implementing as Unix I/O calls expensive

§ read and write require Unix kernel calls
§ > 10,000 clock cycles

¢ Solution: Buffered read
§ Use Unix read to grab block of bytes
§ User input functions take one byte at a time from buffer

§ Refill buffer when empty

unreadalready readBuffer

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O
¢ Standard I/O functions use buffered I/O

¢ Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action
¢ You can see this buffering in action for yourself, using the

always fascinating Linux strace program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
¢ Copying file to stdout, line-by-line with stdio

¢ Demo:
linux> strace ./showfile3_stdio names.txt

#include "csapp.h"
#define MLINE 1024

int main(int argc, char *argv[])
{

char buf[MLINE];
FILE *infile = stdin;
if (argc == 2) {

infile = fopen(argv[1], "r");
if (!infile) exit(1);

}
while(fgets(buf, MLINE, infile) != NULL)

fprintf(stdout, buf);
exit(0);

} showfile3_stdio.c

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Unix I/O
¢ Metadata, sharing, and redirection
¢ Standard I/O
¢ RIO (robust I/O) package
¢ Closing remarks

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Unix I/O, C Standard I/O, and
RIO

¢ Two incompatible libraries building on Unix I/O
¢ Robust I/O (RIO): 15-213 special wrappers

good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Recap

¢ Short counts can occur in these situations:
§ Encountering (end-of-file) EOF on reads
§ Reading text lines from a terminal
§ Reading and writing network sockets

¢ Short counts never occur in these situations:
§ Reading from disk files (except for EOF)
§ Writing to disk files

¢ Best practice is to always allow for short counts.

/* Read at most max_count bytes from file into buffer.
Return number bytes read, or error value */

ssize_t read(int fd, void *buffer, size_t max_count);

/* Write at most max_count bytes from buffer to file.
Return number bytes written, or error value */

ssize_t write(int fd, void *buffer, size_t max_count);

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package (15-213/CS:APP Package)
¢ RIO is a set of wrappers that provide efficient and robust I/O

in apps, such as network programs that are subject to short
counts

¢ RIO provides two different kinds of functions
§ Unbuffered input and output of binary data

§ rio_readn and rio_writen
§ Buffered input of text lines and binary data

§ rio_readlineb and rio_readnb
§ Buffered RIO routines are thread-safe and can be interleaved

arbitrarily on the same descriptor

¢ Download from http://csapp.cs.cmu.edu/3e/code.html
à src/csapp.c and include/csapp.h

http://csapp.cs.cmu.edu/public/code.html

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output
¢ Same interface as Unix read and write
¢ Especially useful for transferring data on network sockets

§ rio_readn returns short count only if it encounters EOF
§ Only use it when you know how many bytes to read

§ rio_writen never returns a short count
§ Calls to rio_readn and rio_writen can be interleaved arbitrarily on

the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation of rio_readn
/*
* rio_readn - Robustly read n bytes (unbuffered)
*/

ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig handler return */
nread = 0; /* and call read() again */

else
return -1; /* errno set by read() */

}
else if (nread == 0)

break; /* EOF */
nleft -= nread;
bufp += nread;

}
return (n - nleft); /* Return >= 0 */

} csapp.c

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions
¢ Efficiently read text lines and binary data from a file partially

cached in an internal memory buffer

§ rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf
§ Especially useful for reading text lines from network sockets

§ Stopping conditions
§ maxlen bytes read
§ EOF encountered
§ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont)

§ rio_readnb reads up to n bytes from file fd
§ Stopping conditions

§ maxlen bytes read
§ EOF encountered

§ Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor
§ Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

unread

Buffered I/O: Implementation
¢ For reading from file
¢ File has associated buffer to hold bytes that have been read

from file but not yet read by user code

¢ Layered on Unix file:

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Declaration
¢ All information contained in struct

typedef struct {
int rio_fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
¢ Copying file to stdout, line-by-line with rio

¢ Demo:
linux> strace ./showfile4_rio names.txt

#include "csapp.h"
#define MLINE 1024

int main(int argc, char *argv[])
{

rio_t rio;
char buf[MLINE];
int infd = STDIN_FILENO;
ssize_t nread = 0;
if (argc == 2) {

infd = Open(argv[1], O_RDONLY, 0);
}
Rio_readinitb(&rio, infd);
while((nread = Rio_readlineb(&rio, buf, MLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, nread);
exit(0);

} showfile4_stdio.c

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Unix I/O
¢ Metadata, sharing, and redirection
¢ Standard I/O
¢ RIO (robust I/O) package
¢ Closing remarks

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
¢ Copying file to stdout, loading entire file with mmap

¢ Demo:
linux> strace ./showfile5_mmap names.txt

#include "csapp.h"

int main(int argc, char **argv)
{

struct stat stat;
if (argc != 2) exit(1);
int infd = Open(argv[1], O_RDONLY, 0);
Fstat(infd, &stat);
size_t size = stat.st_size;
char *bufp = Mmap(NULL, size, PROT_READ,

MAP_PRIVATE, infd, 0);
Write(1, bufp, size);
exit(0);

} showfile5_mmap.c

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O vs. Standard I/O vs. RIO

¢ Standard I/O and RIO are implemented using low-level Unix I/O

¢ Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O
¢ Pros

§ Unix I/O is the most general and lowest overhead form of I/O
§ All other I/O packages are implemented using Unix I/O functions

§ Unix I/O provides functions for accessing file metadata
§ Unix I/O functions are async-signal-safe and can be used safely in signal

handlers

¢ Cons
§ Dealing with short counts is tricky and error prone
§ Efficient reading of text lines requires some form of buffering, also tricky

and error prone
§ Both of these issues are addressed by the standard I/O and RIO packages

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O
¢ Pros:

§ Buffering increases efficiency by decreasing the number of read and
write system calls

§ Short counts are handled automatically

¢ Cons:
§ Provides no function for accessing file metadata
§ Standard I/O functions are not async-signal-safe, and not appropriate for

signal handlers
§ Standard I/O is not appropriate for input and output on network sockets

§ There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions
¢ General rule: use the highest-level I/O functions you can

§ Many C programmers are able to do all of their work using the standard
I/O functions

§ But, be sure to understand the functions you use!

¢ When to use standard I/O
§ When working with disk or terminal files

¢ When to use raw Unix I/O
§ Inside signal handlers, because Unix I/O is async-signal-safe
§ In rare cases when you need absolute highest performance

¢ When to use RIO
§ When you are reading and writing network sockets
§ Avoid using standard I/O on sockets

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

¢ Binary File
§ Sequence of arbitrary bytes
§ Including byte value 0x00

¢ Functions you should never use on binary files
§ Text-oriented I/O: such as fgets, scanf, rio_readlineb

§ Interpret EOL characters.
§ Use functions like rio_readn or rio_readnb instead

§ String functions
§ strlen, strcpy, strcat
§ Interprets byte value 0 (end of string) as special

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Extra Slides

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (3)

¢ What would be the contents of the resulting file?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1, fd2, fd3;
char *fname = argv[1];
fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);
Write(fd1, "pqrs", 4);
fd3 = Open(fname, O_APPEND|O_WRONLY, 0);
Write(fd3, "jklmn", 5);
fd2 = dup(fd1); /* Allocates descriptor */
Write(fd2, "wxyz", 4);
Write(fd3, "ef", 2);
return 0;

} ffiles3.c

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Directories
¢ Only recommended operation on a directory: read its entries

§ dirent structure contains information about a directory entry
§ DIR structure contains information about directory while stepping

through its entries
#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;
struct dirent *de;
...
if (!(directory = opendir(dir_name)))

error("Failed to open directory");
...
while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);
}
...
closedir(directory);

}

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Accessing File Metadata
int main (int argc, char **argv)
{

struct stat stat;
char *type, *readok;

Stat(argv[1], &stat);
if (S_ISREG(stat.st_mode)) /* Determine file type */

type = "regular";
else if (S_ISDIR(stat.st_mode))

type = "directory";
else

type = "other";
if ((stat.st_mode & S_IRUSR)) /* Check read access */

readok = "yes";
else

readok = "no";

printf("type: %s, read: %s\n", type, readok);
exit(0);

}

linux> ./statcheck statcheck.c
type: regular, read: yes
linux> chmod 000 statcheck.c
linux> ./statcheck statcheck.c
type: regular, read: no
linux> ./statcheck ..
type: directory, read: yes

statcheck.c

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For Further Information
¢ The Unix bible:

§ W. Richard Stevens & Stephen A. Rago, Advanced Programming in the
Unix Environment, 3rd Edition, Addison Wesley, 2013
§ Updated from Stevens’s 1993 classic text

¢ The Linux bible:
§ Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010

§ Encyclopedic and authoritative

