Carnegie Mellon

4

VELCOME "‘ ’ |5;ﬁ3" —
. et

T ————

<« AN g s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
19t Lecture, October 8, 2019

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Printers Used to Catch on Fire

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Highly Exceptional Control Flow

234 | static int 1lp_check status(int minor)

235 | {

236 int error = 0;

237 unsigned int last = lp table[minor].last error;

238 unsigned char status = r_str(minor);

239 if ((status & LP_PERRORP) && ! (LP F(minor) & LP CAREFUL))
240 /* No error. */

241 last = 0;

242 else if ((status & LP POUTPA)) {

243 if (last != LP POUTPA) {

244 last = LP_POUTPA;

245 printk (KERN INFO "lp%d out of paper\n", minor);
246 1

247 error = -ENOSPC;

248 } else if (! (status & LP PSELECD)) ({

249 if (last != LP PSELECD) {

250 last = LP_PSELECD;

251 printk(KERN INFO "lp%d off-line\n", minor);
252 1

253 error = —ET0;

254 } else if (! (status & LP PERRCRP)) ({

255 if (last != LP PERRORP) {

256 last = LP_PERRORP;

257 printk (KERN INFO "lp%d on fire\n", minor);
258 1

259 error = —-EIO;

260 } else {

261 last = 0; /* Come here if LP CAREFUL is set and nc
262 errors are reported. */

263 }

264

265 lp_table[minorj.last_error = last;

266

267 if (last != 0)

268 lp error(minor);

269

270 return error;

27

} https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3

]
>t

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

[
[
m Processes
L

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
) inst
Time o2
inst;
inst,
<shutdown>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer

= 3, Signals
= Implemented by OS software

= 4. Nonlocal jumps: setjmp () and Longjmp ()
= Implemented by C runtime library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

[
[
m Processes
L

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code
Event —— | _currenty Exception R
|_next Exception processing

by exception handler
* Return to |_current
* Return to |_next
* Abort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Exception Tables

Exception

numbers
Code for m Each type of event has a
exception handler 0 unique exception number k

¢,Exception Code for

Table .

exception handler 1 — . .

0 re E m k =index into exception table

1 o Code for (a.k.a. interrupt vector)

2 C exception handler 2

n-1 Ly m Handler k is called each time

exception k occurs

Code for
exception handler n-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

(partial) Taxonomy
ECF

Asynchronous Synchronous

Interrupts Traps Faults Aborts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional, set program up to “trip the trap” and do something
= Examples: system calls, gdb breakpoints
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

System Call Example: Opening File

m Usercalls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov SOx2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp SOxfFFfFffFffff001,%rax

e5dfa: ¢3 retq

User code Kernel code m 2rax contains syscall number
m Otherargumentsin $rdi,
Exception %rsi, $rdx, $r10, $r8, 3r9

«

syscall

cmp : m Returnvaluein $rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

System Call | Aimost like a function call

[]
a User calls: open (£ Transfer of control . .
* On return, executes next instruction
* Passes arguments using calling convention
00000000000e5d70 <_op © G€ts result in srax

m Calls __open functi

e5d79: b8 02 00 00 00

e5d7e: Of 05 sysc One Important exception!
eSdfa: c3 etq °* Different set of privileges

 And other differences:
* E.g., “address” of “function” is in $rax
e Uses errno

* Etc.
syscally Except

cmp - . m Return valuein $rax
Open file
Returns m Negative value is an error

| corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

«

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ain 0
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code

Exception: page fault

»

mov| % >
\l COpy page_from
Return and disk to memory

reexecute movl

v

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl >

Detect invalid address

A 4

» Signal process

m Sends SIGSEGV signal to user process

m User process exits with “segmentation fault”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Processes

m Definition: A process is an instance of a running
program.
" One of the most profound ideas in computer science
"= Not the same as “program” or “processor”

m Process provides each program with two key
; Memory
abstractions:

" |ogical control flow Stack

= Each program seems to have exclusive use of the CPU Ige;tl:

= Provided by kernel mechanism called context switching Code

" Private address space

= Each program seems to have exclusive use of main CPU

memory. Registers

= Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data oee Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & I/O devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Multiprocessing Example

x| xXterm
Proceszes: 123 total, 5 running, 3 stuck, 103 sleeping, 611 threads 1147207
Load Awg: 1,03, 1,13, 1,14 CPU usage: 3.27E uzer, 5,158 =sys, 91.56% idle
SharedLibz: 576K resident, OB data, OB linkedit,
MemReqionz: 27958 total, 1127YM resident,. 35 private, 494M shared,
PhysMem: 1039M wired, 1974M active, 10B2M inactiwve, 407VEM uszed, 18M free,
YH: 280G wsize, 1091H framework wsize, 23079213(1) pageins, B843367(0) pageouts,
Metworks: packets: 41046228/1106 in, BROS309G6/77G out, [

Disk=; 17674331/3490 read, 12847373/93406 written, F
FII COMMAND ZCPU TIME #TH #l #PORT #MREG EPRWT RSHRD RSIZE WPRMT WSIZE
93217- Wicrosoft OF 0,0 02323,34 4 1 202 418 Z21M 24H 21H BEH 7E3H
33051 usbmuzxd 0,0 00:04,10 3 1 47 BE 436k 216K 480K BOM 2422H
93006 iTunesHelper 0,0 00301,23 2 1 55 78 f28k 3124k 1124k 43H 2429
54286 bash 0.0 00:00,11 1 0 20 24 224k A2 484k 17M 2378
84280 xterm 0,0 00:00,535 1 0 32 73 BoEk 872K B9k 9728k ZEEZH
55933- Microsoft Ex 0,3 21:58,97 10 3 360 954 1EM B5M 4EM 114K 1057M
54701 =zleep 0,0 000,00 1 0 17 20 32k 212K 3B0K 9E32K ZE70M
24723 launchdadd 0,0 000000 2 1 33 al 488k 220K 173EK 4oM 24034
S47E7 top 6.5 000253 171 0 30 29 1416k 216K 2124k 17H 2378
54713 automountd 0,0 Q000,02 7 1 03 B4 aB0k 21EK 2184k DaM 2413H
94701 ocspd 0,0 00:00,05 4 1 Bl 04 1268k ZB44k 3132k DOM 242EH
S4EE1 Grab 0,6 0002,75 B 3 222+ 389+ 18M+ ZEM+ 40M+ FhM+ 25EREM+
54653 cookied 0,0 000,15 2 1 40 Bl 2316k 224K 4088k 42H 2411H
E2HE el s A Anstl B7 A 1 57 =y FEOAK 741 1EM AAH 2420

m Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory

Stack Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code

: Saved Saved

registers registers
CPU
Registers

m Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (like last week)
= Register values for nonexecuting processes saved in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
reg%srters : registers registers
CPU
Registers

m Save current registers in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved
registers registers
CPU
Registers

m Schedule next process for execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Load saved registers and switch address space (context switch)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Multiprocessing: The (Modern) Reality

Memory

Stack : Stack : Stack
Heap : : Heap : Heap
Data L Data ees Data
Code o Code ; Code

x : Saved

registers
CPU | CPU [w Multicore processors
Registers | |. Registers | |: = Multiple CPUs on single chip

T Cara e . .] Share main memory (and some Caches)
u EaCh can execute a Separate process

= Scheduling of processors onto cores
done by kernel

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A& B, A&C
= Sequential: B& C

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
Process A : Process B
|
: user code
: kernel code } context switch
Time : user code

| kernel code } context switch
I
I user code
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspectiv'e, Third Edition 31

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

[
[
m Processes
L

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

System Call Error Handling

m On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

m Hard and fast rule:

" You must check the return status of every system-level function
= Only exception is the handful of functions that return void

m Example:

if ((pid = fork()) < 0) {
fprintf (stderr, "fork error: %s\n", strerror(errno));
exit(-1);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix error (char *msg) /* Unix-style error */
{
fprintf (stderr, "%s: %s\n", msg, strerror (errno));
exit(-1);
} \
if ((pid = fork()) < 0) Note: csapp.c exits with 0.

unix error ("fork error");

m But, must think about application. Not alway appropriate
to exit when something goes wrong.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens!-style error-handling wrappers:

pid t Fork(void)
{
pid t pid;
if ((pid = fork()) < 0)
unix error ("Fork error");
return pid;
}

pid = Fork() ;

m NOT what you generally want to do in a real application

le.g., in “UNIX Network Programming: The sockets networking API“ W. Richard Stevens

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Obtaining Process IDs

m pid t getpid(void)

= Returns PID of current process

m pid t getppid(void)

= Returns PID of parent process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

m Running

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

m Stopped

" Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

m Terminated
" Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= (Calling the exit function

m void exit(int status)
" Terminates with an exit status of status
® Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m exitis called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Creating Processes

m Parent process creates a new running child process by
calling fork

m int fork (void)
= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m fork is interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Conceptual View of fork

Memory

Stack

Heap 9

Data
Code

Saved
registers

CPU

Registers

m Make complete copy of execution state
= Designate one as parent and one as child
= Resume execution of parent or child

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory

parent child
Stack Stack
Heap Heap
Data Data
Code Code
Saved Saved

registers registers
CPU

Registers

40

Carnegie Mellon

The £fork Function Revisited

m VM and memory mapping explain how fork provides private
address space for each process.

m To create virtual address for new process:

" Create exact copies of currentmm _struct, vm_area struct, and
page tables.

= Flag each page in both processes as read-only
" Flag each vmn_area struct in both processes as private COW

m On return, each process has exact copy of virtual memory.

m Subsequent writes create new pages using COW mechanism.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

fork Example

B e e e e m Call once, return twice

{

pid t pid; m Concurrent execution

int x = 1; = Can’t predict execution

_ order of parent and child
pid = Fork();

if (pid == 0) { /* Child */
printf ("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --Xx);
return O;

linux> ./fork linux> ./fork linux> ./fork linux> ./fork
parent: x=0 child : x=2 parent: x=0 parent: x=0
child : x=2 parent: x=0 child : x=2 child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Making £fork More Nondeterministic

m Problem
" Linux scheduler does not create much run-to-run variance

= Hides potential race conditions in nondeterministic programs
= E.g., does fork return to child first, or to parent?

m Solution

= Create custom version of library routine that inserts random delays along
different branches

= E.g., for parent and child in fork

= Use runtime interpositioning to have program use special version of
library code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Variable delay fork

/* fork wrapper function */
pid t fork(void) ({
initialize() ;
int parent delay = choose delay() ;
int child delay = choose delay() ;
pid t parent pid = getpid();
pid t child pid or zero = real fork();
if (child pid or zero > 0) {
/* Parent */
if (verbose) {
printf (

"Fork. Child pid=%d, delay = %dms. Parent pid=%d, delay = %dms\n",
child pid or zero, child delay,
parent pid, parent delay);

fflush (stdout) ;

}

ms_sleep (parent delay) ;
} else {
/* Child */
ms_sleep(child delay) ;
}
return child pid or_ zero;
} myfork.c “

Carnegie Mellon

fork Example

int main(int argc, char** argv)
{

pid t pid;

int x =1;

pid = Fork() ;

if (pid = 0) { /* Child */
printf("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

linux> ./fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

" x has a value of 1 when

fork returns in parent and
child

= Subsequent changes to x
are independent

m Shared open files

" stdoutis the samein
both parent and child

45

Modeling £fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

= Each vertex is the execution of a statement
" a->b means a happens before b

= Edges can be labeled with current value of variables
" printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.

= Total ordering of vertices where all edges point from left to right

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Process Graph Example

int main(int argc, char** argv)

{
pid t pid;
int x = 1;
child: x=2 :
piel = DEE L) g?;tf e:at Child
if (pid == 0) { /* Child */ P
0 " C c =% " o Xx== arent: x=0
printf("child : x=%d\n", ++x); . o P o - Parent
return O; main fork printf exit

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Interpreting Process Graphs

m Original graph:

child: x=2
>® >»®
printf exit
x==1=J parent: x=0
® >@ >»®
main for printf exit
k
= Relabled graph: Feasible total ordering:
[YV
° s . o] a b e C f d
a c

Infeasible total ordering:

st" " e
*

| 4 X
f

C e d
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

fork Example: Two consecutive forks

{

void fork2 ()

printf ("LO\n") ;

fork () ;

printf ("L1\n") ;

fork () ;

printf ("Bye\n") ;

forks.c

Bye
°
printf
Ll Bye
>0— > >@®
printf fork printf
Bye
.0
printf
.0 L1l Bye
> — +@ »o— > >®

printf fork printf

Feasible output:
LO

Ll

Bye

Bye

Ll

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fark printf

Infeasible output:
LO

Bye

Ll

Bye

Ll

Bye

Bye

49

Carnegie Mellon

fork Example: Nested forks in parent

void fork4 ()
{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork() '= 0) {
printf ("L2\n") ;
}
}
printf ("Bye\n") ;
} forks.c

LO

Bye Bye

printf ‘ printf
L1l L2 Bye
>0 > >0 ¢X

[>
printf fork Pp

Feasible output:

LO
Ll
Bye
Bye
L2
Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

rintf fork printf printf

Infeasible output:
LO

Bye

Ll

Bye

Bye

L2

50

fork Example: Nested £orks in children

void fork5 ()

{ .
printf ("LO\n") ; printf printf
if (fork() == 0) { g& N E¥e

printf ("L1\n") ; printf fork printf
if (fork() == 0) { LO Bye
printf ("L2\n") ; pr:iﬁltf ;ork pr?.ntf
}
}
RrinEE Byl Feasible output: Infeasible output:

} forks.c L0 LO

Bye Bye
L1 L1l

L2 Bye
Bye Bye

Bye L2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

https://canvas.cmu.edu/courses/10968

Carnegie Mellon

Reaping Child Processes
m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait orwaitpid)
= Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= Unless ppid == 1! Then need to reboot...
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

° void fork7() {
Zombie if (fork() == 0) {
/* Child */
Example printf ("Terminating Child, PID = %d\n", getpid()):
exit (0) ;
} else {

while (1)

; /* Infinite loop */
linux> ./forks 7 & }
[1] 6639 }

printf ("Running Parent, PID = %d\n", getpid()):

Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks

ps shows child process as

6640 ttyp9 00:00:00 forks <defunct></ “defunct” (i.e., a zombie)

6641 ttyp9 00:00:00 ps
linux> kill 6639

[1] Terminated m Killing parent allows child to
linux> ps be reaped by init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh}
6642 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

54

Non-
terminating
Child Example

Carnegie Mellon

void fork8()
{
if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid()) ;
while (1)

linux> ./forks 8
Terminating Parent, PID =
Running Child, PID =

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9

} else {

}

printf ("Terminating Parent, PI

exit (0) ;

; /* Infinite loop */

= %d\n",
getpid()) ;

6675
6676 |

TIME CMD
00:00:00 tcsh
00:00:06 fork u

00:00:00
linux> kill 6676

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

TIME CMD
00:00:00 tecsh
00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Child process still active even
though parent has terminated

Must kill child explicitly, or else will
keep running indefinitely

55

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
" |mplemented as syscall

Parent Process Kernel code

«

Exception And, potentially other user

‘w processes, including a child
Returns

of parent

syscall

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status != NULL, then the integer it points to will be set
to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwait.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

wait: Synchronizing with Children

void fork9 () {
int child status;
HC exit
>»0— >
if (fork() == 0) { printf
printf ("HC: hello from child\n");
exit (0) ;
CT
} else { Bye
printf ("HP: hello from parent\n"); o :Ei A ¢z
wait (&child status); fork printf wait printf
printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;
} forks.c
Feasible output(s): Infeasible output:
HC HP HP
HP HC CT
CT CT Bye

Bye Bye HC

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Another wait Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO () {
pid t pid[N];
int i, child status;

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void forkll () {
pid t pid[N];
int i;
int child status;

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant dna U Hamaron, CoOomputer SYStems? A Programmer S Perspective, Tnira Eartion 60

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file £filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
» getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= .exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp [n-1] ——> "PWD=/usr/droh"
: envp [0] ——> "USER=droh"
environ >
myargv [argc] = NULL
(argc == 3) myargv[2] —> "/usr/include"
myargv[l] 3 "_]t"
myargv =————> ayarey D] —> "/bin/1s"

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve (myargv[0], myargv, environ) < 0) {
printf ("%$s: Command not found.\n", myargv[0]) ;
exit(1l);

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

62

Carnegie Mellon

Bottom of stack

Null-terminated

Stru Ctu re Of environment variable strings | ___
Null-terminated
the StaCk When ___,| command-line arg strings
anew program | — ———————
Sta rtS i envp (B] i environ
i _|.(global var)
! envp [0] - <
i argvlargc] = NULL 1 envp
E argv[argc-1] (in $rdx)
argv _______"_'_'_"". argV[O]
(in $rsi)
argc Stack frame for
(in $rdi) libc start main Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

The execwve Function Revisited

User stack } Private, demand-zero ™ To load and run a new
program a.out in the
l current process using

execve.
libc.so T

data " Memory mapped region

m Freevin area struct’s

} Shared, file-backed

text | forsharedlibraries and page tables for old areas
1 m Createvm _area struct’s
and page tables for new
Runtime heap (via malloc) } Private, demand-zero areas
= Programs and initialized data
Uninitialized data (.bss) } Private, demand-zero backed by object files.
a.out = _bss and stack backed by
data —— [Initialized data (.data) anonymous files.
toxt Private, file-backed
Xt — Program text (.text)

m Set PCto entry pointin
0 . text

= Linux will fault in code and
data pages as needed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Summary

m Exceptions
= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
®= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Summary (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
" Callexit

® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
" Call execve (or variant)

" One call, (normally) no return

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

