
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Exceptions and Processes

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
19th Lecture, October 8, 2019

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Printers Used to Catch on Fire

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Highly Exceptional Control Flow

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 Processors do only one thing:
▪ From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:
▪ Jumps and branches

▪ Call and return

React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

 System needs mechanisms for “exceptional control flow”

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
▪ 1. Exceptions

▪ Change in control flow in response to a system event
(i.e., change in system state)

▪ Implemented using combination of hardware and OS software

 Higher level mechanisms
▪ 2. Process context switch

▪ Implemented by OS software and hardware timer

▪ 3. Signals

▪ Implemented by OS software

▪ 4. Nonlocal jumps: setjmp() and longjmp()

▪ Implemented by C runtime library

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions

 An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
1

2
...

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(partial) Taxonomy

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

 Examples:
▪ Timer interrupt

▪ Every few ms, an external timer chip triggers an interrupt

▪ Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

▪ Hitting Ctrl-C at the keyboard

▪ Arrival of a packet from a network

▪ Arrival of data from a disk

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
▪ Traps

▪ Intentional, set program up to “trip the trap” and do something

▪ Examples: system calls, gdb breakpoints

▪ Returns control to “next” instruction

▪ Faults

▪ Unintentional but possibly recoverable

▪ Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

▪ Either re-executes faulting (“current”) instruction or aborts

▪ Aborts

▪ Unintentional and unrecoverable

▪ Examples: illegal instruction, parity error, machine check

▪ Aborts current program

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

Almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Gets result in %rax

One Important exception!
• Executed by Kernel
• Different set of privileges
• And other differences:

• E.g., “address” of “function” is in %rax
• Uses errno
• Etc.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from
disk to memory

Return and
reexecute movl

movl

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address

movl

Signal process

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

 Definition: A process is an instance of a running
program.
▪ One of the most profound ideas in computer science

▪ Not the same as “program” or “processor”

 Process provides each program with two key
abstractions:
▪ Logical control flow

▪ Each program seems to have exclusive use of the CPU

▪ Provided by kernel mechanism called context switching

▪ Private address space

▪ Each program seems to have exclusive use of main
memory.

▪ Provided by kernel mechanism called virtual memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The Illusion

 Computer runs many processes simultaneously
▪ Applications for one or more users

▪ Web browsers, email clients, editors, …

▪ Background tasks

▪ Monitoring network & I/O devices

CPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

CPU
Registers

Memory

Stack

Heap

Code

Data

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

 Running program “top” on Mac
▪ System has 123 processes, 5 of which are active

▪ Identified by Process ID (PID)

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (like last week)
▪ Register values for nonexecuting processes saved in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Modern) Reality

 Multicore processors
▪Multiple CPUs on single chip

▪ Share main memory (and some caches)

▪ Each can execute a separate process

▪ Scheduling of processors onto cores
done by kernel

CPU
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Processes

 Each process is a logical control flow.

 Two processes run concurrently (are concurrent) if their
flows overlap in time

 Otherwise, they are sequential

 Examples (running on single core):
▪ Concurrent: A & B, A & C

▪ Sequential: B & C

Process A Process B Process C

Time

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time

 However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switching

 Processes are managed by a shared chunk of memory-
resident OS code called the kernel
▪ Important: the kernel is not a separate process, but rather runs as part

of some existing process.

 Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Error Handling

 On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

 Hard and fast rule:
▪ You must check the return status of every system-level function

▪ Only exception is the handful of functions that return void

 Example:

if ((pid = fork()) < 0) {

fprintf(stderr, "fork error: %s\n", strerror(errno));

exit(-1);

}

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-reporting functions

 Can simplify somewhat using an error-reporting function:

 But, must think about application. Not alway appropriate
to exit when something goes wrong.

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));

exit(-1);

}

if ((pid = fork()) < 0)

unix_error("fork error");

Note: csapp.c exits with 0.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-handling Wrappers

 We simplify the code we present to you even further by
using Stevens1-style error-handling wrappers:

 NOT what you generally want to do in a real application
1e.g., in “UNIX Network Programming: The sockets networking API“ W. Richard Stevens

pid_t Fork(void)

{

pid_t pid;

if ((pid = fork()) < 0)

unix_error("Fork error");

return pid;

}

pid = Fork();

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Obtaining Process IDs

 pid_t getpid(void)

▪ Returns PID of current process

 pid_t getppid(void)

▪ Returns PID of parent process

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

 Running
▪ Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

 Stopped
▪ Process execution is suspended and will not be scheduled until

further notice (next lecture when we study signals)

 Terminated
▪ Process is stopped permanently

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Terminating Processes

 Process becomes terminated for one of three reasons:
▪ Receiving a signal whose default action is to terminate (next lecture)

▪ Returning from the main routine

▪ Calling the exit function

 void exit(int status)

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an integer value
from the main routine

 exit is called once but never returns.

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes

 Parent process creates a new running child process by
calling fork

 int fork(void)

▪ Returns 0 to the child process, child’s PID to parent process

▪ Child is almost identical to parent:

▪ Child get an identical (but separate) copy of the parent’s virtual
address space.

▪ Child gets identical copies of the parent’s open file descriptors

▪ Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual View of fork

 Make complete copy of execution state
▪ Designate one as parent and one as child

▪ Resume execution of parent or child

CPU
Registers

Memory

Stack

Heap

Code
Data

Saved
registers

CPU
Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

parent child

➔

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The fork Function Revisited

 VM and memory mapping explain how fork provides private
address space for each process.

 To create virtual address for new process:
▪ Create exact copies of current mm_struct, vm_area_struct, and

page tables.

▪ Flag each page in both processes as read-only

▪ Flag each vm_area_struct in both processes as private COW

 On return, each process has exact copy of virtual memory.

 Subsequent writes create new pages using COW mechanism.

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

return 0;

}

/* Parent */

printf("parent: x=%d\n", --x);

return 0;

}

linux> ./fork

parent: x=0

child : x=2

fork.c

 Call once, return twice

 Concurrent execution
▪ Can’t predict execution

order of parent and child

linux> ./fork

child : x=2

parent: x=0

linux> ./fork

parent: x=0

child : x=2

linux> ./fork

parent: x=0

child : x=2

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Making fork More Nondeterministic

 Problem
▪ Linux scheduler does not create much run-to-run variance

▪ Hides potential race conditions in nondeterministic programs

▪ E.g., does fork return to child first, or to parent?

 Solution
▪ Create custom version of library routine that inserts random delays along

different branches

▪ E.g., for parent and child in fork

▪ Use runtime interpositioning to have program use special version of
library code

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variable delay fork
/* fork wrapper function */

pid_t fork(void) {

initialize();

int parent_delay = choose_delay();

int child_delay = choose_delay();

pid_t parent_pid = getpid();

pid_t child_pid_or_zero = real_fork();

if (child_pid_or_zero > 0) {

/* Parent */

if (verbose) {

printf(

"Fork. Child pid=%d, delay = %dms. Parent pid=%d, delay = %dms\n",

child_pid_or_zero, child_delay,

parent_pid, parent_delay);

fflush(stdout);

}

ms_sleep(parent_delay);

} else {

/* Child */

ms_sleep(child_delay);

}

return child_pid_or_zero;

} myfork.c

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example
int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

return 0;

}

/* Parent */

printf("parent: x=%d\n", --x);

return 0;

}

linux> ./fork

parent: x=0

child : x=2

 Call once, return twice

 Concurrent execution
▪ Can’t predict execution

order of parent and child

 Duplicate but separate
address space
▪ x has a value of 1 when

fork returns in parent and
child

▪ Subsequent changes to x
are independent

 Shared open files
▪ stdout is the same in

both parent and child

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
▪ Each vertex is the execution of a statement

▪ a -> b means a happens before b

▪ Edges can be labeled with current value of variables

▪ printf vertices can be labeled with output

▪ Each graph begins with a vertex with no inedges

 Any topological sort of the graph corresponds to a feasible
total ordering.
▪ Total ordering of vertices where all edges point from left to right

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graph Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

return 0;

}

/* Parent */

printf("parent: x=%d\n", --x);

return 0;

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpreting Process Graphs

 Original graph:

 Relabled graph:

child: x=2

main for

k

printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Two consecutive forks

void fork2()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0

L1

Bye

Bye

L1

Bye

Bye

Infeasible output:
L0

Bye

L1

Bye

L1

Bye

Bye

forks.c

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in parent

void fork4()

{

printf("L0\n");

if (fork() != 0) {

printf("L1\n");

if (fork() != 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0

L1

Bye

Bye

L2

Bye

Infeasible output:
L0

Bye

L1

Bye

Bye

L2

forks.c

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in children

void fork5()

{

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf

Bye

Feasible output:
L0

Bye

L1

L2

Bye

Bye

Infeasible output:
L0

Bye

L1

Bye

Bye

L2

forks.c

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

https://canvas.cmu.edu/courses/10968

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes
 Idea

▪ When process terminates, it still consumes system resources

▪ Examples: Exit status, various OS tables

▪ Called a “zombie”

▪ Living corpse, half alive and half dead

 Reaping
▪ Performed by parent on terminated child (using wait or waitpid)

▪ Parent is given exit status information

▪ Kernel then deletes zombie child process

 What if parent doesn’t reap?
▪ If any parent terminates without reaping a child, then the orphaned

child should be reaped by init process (pid == 1)

▪ Unless ppid == 1! Then need to reboot…

▪ So, only need explicit reaping in long-running processes

▪ e.g., shells and servers

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

Zombie
Example

forks.c
linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to
be reaped by init

void fork7() {

if (fork() == 0) {

/* Child */

printf("Terminating Child, PID = %d\n", getpid());

exit(0);

} else {

printf("Running Parent, PID = %d\n", getpid());

while (1)

; /* Infinite loop */

}

}

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

Non-
terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

forks.clinux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

void fork8()

{

if (fork() == 0) {

/* Child */

printf("Running Child, PID = %d\n",

getpid());

while (1)

; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",

getpid());

exit(0);

}

}

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)

▪ Suspends current process until one of its children terminates

▪ Implemented as syscall

Parent Process Kernel code

Exception

Returns

syscall
…

And, potentially other user
processes, including a child
of parent

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)

▪ Suspends current process until one of its children terminates

▪ Return value is the pid of the child process that terminated

▪ If child_status != NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:

▪ Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,

WTERMSIG, WIFSTOPPED, WSTOPSIG,

WIFCONTINUED

– See textbook for details

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

exit(0);

} else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:
HC

HP

CT

Bye

Infeasible output:
HP

CT

Bye

HC

Feasible output(s):
HC HP

HP HC

CT CT

Bye Bye

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example
 If multiple children completed, will take in arbitrary order

 Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork10() {

pid_t pid[N];

int i, child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */

}

for (i = 0; i < N; i++) { /* Parent */

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminate abnormally\n", wpid);

}

} forks.c

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process

 pid_t waitpid(pid_t pid, int *status, int options)

▪ Suspends current process until specific process terminates

▪ Various options (see textbook)

void fork11() {

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */

for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminate abnormally\n", wpid);

}

} forks.c

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
▪ Executable file filename

▪ Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

▪ …with argument list argv

▪ By convention argv[0]==filename

▪ …and environment variable list envp

▪ “name=value” strings (e.g., USER=droh)

▪ getenv, putenv, printenv

 Overwrites code, data, and stack
▪ Retains PID, open files and signal context

 Called once and never returns
▪ …except if there is an error

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

"USER=droh"

"PWD=/usr/droh"

environ

if ((pid = Fork()) == 0) { /* Child runs program */

if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);

exit(1);

}

}

 Execute "/bin/ls –lt /usr/include" in child process
using current environment:

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

"/bin/ls"

"-lt"

"/usr/include"

myargv

(argc == 3)

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of
the stack when
a new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for
main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for
libc_start_main

argc

(in %rdi)

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The execve Function Revisited

 To load and run a new
program a.out in the
current process using
execve:

 Free vm_area_struct’s
and page tables for old areas

 Create vm_area_struct’s
and page tables for new
areas
▪ Programs and initialized data

backed by object files.
▪ .bss and stack backed by

anonymous files.

 Set PC to entry point in
.text

▪ Linux will fault in code and
data pages as needed.

Memory mapped region

for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so

.data

.text
Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out

.data

.text

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Exceptions
▪ Events that require nonstandard control flow

▪ Generated externally (interrupts) or internally (traps and faults)

 Processes
▪ At any given time, system has multiple active processes

▪ Only one can execute at a time on any single core

▪ Each process appears to have total control of
processor + private memory space

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary (cont.)

 Spawning processes
▪ Call fork

▪ One call, two returns

 Process completion
▪ Call exit

▪ One call, no return

 Reaping and waiting for processes
▪ Call wait or waitpid

 Loading and running programs
▪ Call execve (or variant)

▪ One call, (normally) no return

