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Virtual Memory: Concepts
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Introduction to Computer Systems
17th Lecture, October 22, 2019
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Hmmm, How Does This Work?!

Process 1 Process 2 Process n
OOOO7FFFFFFFFFFF OO0OOO7FFFFFFFFFFF
Stack Stack Stack
Shared Shared Shared
Libraries Libraries Libraries
' t t
Heap Heap Heap
Data Data Data
Text Text Text
400000 400000
000000 000000

Solution: Virtual Memory (today and next lecture)
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Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation
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A System Using Physical Addressing

Main memory
0:
1:
Physical address 2:

(PA) 3: \
CPU >

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames
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A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address :
(VA) (PA) ) )
CPU —>  MMU 7 > 4:
4100 5:
A ' }
6:
7: J
8:
M-1
Data word

m Used in all modern servers, laptops, and smart phones
m One of the great ideas in computer science
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Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer

addresses:
{0,1,2,3..}

m Virtual address space: Set of N = 2" virtual addresses
{0,1, 2,3, .. N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,.. M-1}
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Why Virtual Memory (VM)?

m Uses main memory efficiently

= Use DRAM as a cache for parts of a virtual address space

m Simplifies memory management
= Each process gets the same uniform linear address space

m Isolates address spaces

= One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code
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Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation
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VM as a Tool for Caching

m Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

m The contents of the array on disk are cached in physical
memory (DRAM cache)

= These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0
VP 0 | Unallocated
0

Uncached PP 1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m-p-1

M-1
VP 2n-r-1 | Uncached N1
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM
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DRAM Cache Organization

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM
" Time to load block from disk > 1ms (> 1 million clock cycles)
= CPU can do a lot of computation during that time

m Conseguences
= Large page (block) size: typically 4 KB
= Linux “huge pages” are 2 MB (default) to 1 GB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware

= Write-back rather than write-through
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Enabling Data Structure: Page Table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM

] Physical memory
Physical page (DRAM)
number or
VP1 PPO

e (\)/Cllld disk adtlllress / VP
0 “i/,’¢= VP 7
.”),‘z VP 4

PP 3

=|lo|lo|r|O |~ |~
y J
/
/|

null L Virtual memory
S .
> { S R (disk)

. N N

Memory resident ™~ N o VP 2
N N
page table S o VP 3
N

(DRAM) ~.

RN VP 4
S 'S
VP 6
, , o VP 7 12
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Page Hit

m Page hit: reference to VM word that is in physical memory

(DRAM cache hit)

Physical page
number or
Valid disk address

PTEO| 0 null
0/4
o/—‘

Virtual address

>

=|lo|lo|r|o |- |-
¥ J
/
/|

PTE 7

Memory resident\ e
page table
(DRAM)
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Physical memory
(DRAM)

VP 1

VP 7
VP 4

Virtual memory
(disk)

VP 1
VP 2
VP 3
VP 4

VP 6
VP 7

PP O

PP 3
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Page Fault

m Page fault: reference to VM word that is not in physical

memory (DRAM cache miss)

Physical page

Virtual address number or
Valid disk address

PTEO| o null

=|o|lo|rlOolr |-

PTE 7

Memory resident\ .
page table
(DRAM)
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Physical memory

(DRAM)
VP 1 PP O
VP 2
VP 7
VP 4 PP3

Virtual memory
(disk)

VP 1
VP 2

I VP 3 |
VP 4

VP 6
VP 7
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Triggering a Page Fault

m User writes to memory location

80483b7: c7 05 10 94 04 08 0Ad movl $0xd, 0x8049d10
m That portion (page) of user’s memory int a[1000];
is currently on disk main ()
: . {
m MMU triggers page fault exception a[500] = 13;
= (More details in later lecture) }

= Raise privilege level to supervisor mode
= Causes procedure call to software page fault handler

User code Kernel code

l Exception: page fault

mov|
Execute page fault

handler
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Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or e
: ik
VaI(;d dis adtlilress /" =5
nu
= VP 7
L ./4 VP 4
1
0 Q
1 o){\/
0 null 1L Virtual memory
0 o ~ | >« (disk)
/\ RS
1 =~ S o VP 1
o ~
Memory resident >~ - o . VP 2
page table So
(DRAM) S VP3
RN VP 4
\ A
VP 6
VP 7
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PP O

PP 3
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or e
: ik
Val(;d dis adtlilress % =5
nu
= VP 7
1 —— VP4
1
0 Q
1 o){\/
0 null 1L Virtual memory
0 o ~ | >« (disk)
/\ S
1 =~ S o VP 1
o ~
Memory resident >~ - o . VP 2
page table So
(DRAM) S VP3
RN VP 4
~ A
VP 6
VP 7
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PP O

PP 3
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical page

Physical memory

number or

0

(DRAM)
VP 1 PPO
VP 2
VP 7
VP 3 PP3

Valid disk address /
null — /
— |
* 5
N
~
~
N

mlolo|lolk |k |-

null > Virtual memory
o N (disk)
~
AN < - VP 1
~
Memory resident > - So - VP 2
page table S o S o3
~
(DRAM) ~o o
RN VP 4
~ A
VP 6
VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!
_ Physical memory

Physical page (DRAM)

Virtual address number or

VP1 PPO

Valid disk address /
PTEO| 0 null / VP 2
N

~
~
N

VP 3 PP3

e VP 7
0/4
—
*\

mlolo|lolk |k |-

null > Virtual memory
o N (disk)
PTE 7 o« S | . VP 1
Memory resident ™~ - S VP 2
page table S o RN o
(DRAM) a0 ve3
RN VP 4
Key point: Waiting until the miss to copy the page to Sa P e
DRAM is known as demand paging
VP 7
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Completing page fault

int a[1000];
m Page fault handler executes return from main ()
interrupt (iret) instruction {

= Like ret instruction, but also restores privilege level }

a[500] = 13;

®  Return to instruction that caused fault
= But, this time there is no page fault

80483b7: c7 05 10 94 04 08 0d movl $0xd, 0x8049d10

User code Kernel code

Exception: page fault

movl

Copy page from

disk to memor
Return and y

| reexecute movl
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Allocating Pages

Carnegie Mellon

m Allocating a new page (VP 5) of virtual memory.

Physical page

Physical memory

(DRAM)
number or o]
Valid disk address / Ve 1 PP O
PTEO (1) null :/ p2
VP 3 PP 3
1 ./4
1 —
0 .
0 o~ S Virtual memory
0 :}é . (disk)
Memory resident\\\ \\\ S VP 2
page table AP SN
(DRAM) SooNe Y VP 3
AEERN VP 4
\A
VP 5
m Subsequent miss will bring it into memory VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Locality to the Rescue Again!

m Virtual memory seems terribly inefficient, but it works
because of locality.

m At any point in time, programs tend to access a set of active
virtual pages called the working set

" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
" Good performance for one process (after cold misses)

m If (working set size > main memory size )

® Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

= |f multiple processes run at the same time, thrashing occurs if
their total working set size > main memory size
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Today

Address spaces
VM as a tool for caching

N
N
m VM as a tool for memory management
m VM as a tool for memory protection

N

Address translation
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VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" |t can view memory as a simple linear array
= Mapping function scatters addresses through physical memory

= Well-chosen mappings can improve locality

Address )
Virtual 0 lati 0 Physical
Address VP 1 transiation Address
Space for VP 2 —>| PP2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP6 library code)
: 0
Virtual —>| PPS8
Address VP 1
Space for VP 2
Process 2:

N-1 M-1
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VM as a Tool for Memory Management

m Simplifying memory allocation
= Each virtual page can be mapped to any physical page
= Avirtual page can be stored in different physical pages at different times

m Sharing code and data among processes
= Map virtual pages to the same physical page (here: PP 6)
0 Address 0

Virtual ; lati Physical
Address VP 1 ransiation Address
Space for VP 2 —>| PP2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP6 library code)
. 0
Virtual 5 prs
Address VP 1
Space for VP 2
Process 2:
N-1 M-1
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Simplifying Linking and Loading

m Linking

= Each program has similar virtual
address space

" Code, data, and heap always start
at the same addresses.

m Loading

" execve allocates virtual pages
for .text and .data sections &
creates PTEs marked as invalid

" The .text and .data sections
are copied, page by page, on
demand by the virtual memory

system
0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

|

A

Carnegie Mellon

Memory
invisible to
user code

3rsp

!
1

Memory-mapped region for
shared libraries

T

(stack
pointer)

brk

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Loaded
from

the
executable
file

26
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Today

Address spaces
VM as a tool for caching

N
N
m VM as a tool for memory management
m VM as a tool for memory protection

N

Address translation
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VM as a Tool for Memory Protection

m Extend PTEs with permission bits
m MMU checks these bits on each access

Process i:
VP O:
VP 1:
VP 2:

Process j:

VP 0O:
VP 1:
VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

S

SUP READ WHRITE EXEC Address
No Yes No Yes PP 6
No Yes Yes Yes PP 4
Yes Yes Yes No PP 2
.
[ J
SUP READ WRITE EXEC Address
No Yes No Yes PP9
Yes Yes Yes Yes PP 6
No Yes Yes Yes PP 11

PP 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SUP: requires kernel mode

PP 11

28



Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
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Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation
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VM Address Translation

m Virtual Address Space
= v={0,1,.., N-1}
m Physical Address Space
= P={0,1,.. M-1}
m Address Translation
= MAP: V—> P U {&}
= For virtual address a:
= MAP(a) = a’ if data at virtual address a is at physical address a’in P
= MAP(a) = if data at virtual address a is not in physical memory

— Either invalid or stored on disk
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Summary of Address Translation Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space
= M =2": Number of addresses in physical address space
= P=2P :Pagesize (bytes)
m Components of the virtual address (VA)
= VPO: Virtual page offset
= VPN: Virtual page number

m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
" PPN: Physical page number
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Address Translation With a Page Table

Virtual address

p p-1 0

Virtual page offset (VPO)

Physical page table
address for the current
process

Valid bit = 0:

Page table n-1
base register (PTBR) Virtual page number (VPN)
(CR3 in x86)
Page table
)Valid Physical page number (PPN)

Page not in memory €
(page fault)

Valid bit=1

m-1 v

p p'l \ 4

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Address Translation: Page Hit
o

CPU Chip PTEA N
g . PTE
>
CPU Ly © Cache/
PA 5| Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor
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Address Translation: Page Fault

Exception
=== > Page fault handler
. O
|
|
' o @
CPU Chip o I PTEA > Victim page 5
CPU 2> MMU e AL ey Disk
o o Memory
New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction
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Integrating VM and Cache

PTE
CPU Chip < STEA PTE
hit )
PTEA PTEA PTEA
> miss
CPU VA | MMU Memory
7'y PA PA PA
miss|
PA ) Data
hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word
= PTEs may be evicted by other data references

® PTE hit still requires a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)

= Small set-associative hardware cache in MMU
= Maps virtual page numbers to physical page numbers

= Contains complete page table entries for small number of pages
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Summary of Address Translation Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space
= M =2": Number of addresses in physical address space
= P=2P :Pagesize (bytes)
m Components of the virtual address (VA)
" TLBI: TLB index
" TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number

m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
" PPN: Physical page number
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Accessing the TLB

m MMU uses the VPN portion of the virtual address to
access the TLB:

T = 2t sets
VPN
TLBT matchestag  — — —
of line within set n-1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) | VPO

Set 0 v tdg PTE v tag PTE
TLBI selects the set
\ 4
Setl v tag PTE v tag PTE <€
[ ]
[ ]
[ ]
SetT-1 v tag PTE v tag PTE
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TLB Hit

CPU Chip
TLB
o PTE
VPN e
VA PA
> >
CPU MMU ° Cache/
Memory
Data

A TLB hit eliminates a cache/memory access
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TLB Miss

CPU Chip

TLB o

o PTE

VPN

VA PTEA
> >
CPU MMU Cache/
3 s{ Memory
Data

A TLB miss incurs an additional cache/memory access (the PTE)
Fortunately, TLB misses are rare. Why?
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Multi-Level Page Tables

m Suppose: Level 2
= AKB (2'%) page size, 48-bit address space, 8-byte PTE Tables
= Would need a 512 GB page table! Table

« 248 % D12 ¥ 23 = 239 hyytes ]l _—

m Common solution: Multi-level page table

m Example: 2-level page table

= Level 1 table: each PTE points to a page table (always
memory resident)

= Level 2 table: each PTE points to a page
(paged in and out like any other data)
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A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
0
VPO h
PTEO / PTEO
VP 1023 > 2K allocated VM pages
PTE 1 VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null)
VP 2047 |
PTE 5 (null)
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
(1K _ 9) PTEs Y,
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
VP 9215 1 allocated VM page

] for the stack
64 bit addresses, 8KB pages, 8-byte PTEs
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Translating with a k-level Page Table

Page table
base register
(PTBR)
VIRTUAL ADDRESS
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
the Level 1 a Level 2 a Level k
page table page table page table
4} > P coe .e >
] » PPN |}—
m-1 A 4 p-l v 0
PPN PPO

PHYSICAL ADDRESS
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Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space

= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

m Implemented via combination of hardware & software
= MMU, TLB, exception handling mechanisms part of hardware

= Page fault handlers, TLB management performed in software
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