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Today

m Basic concepts
m Implicit free lists
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Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.

= for data structures whose size
is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap.
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«—S3rsp
l (stack
t pointer)
Memory-mapped region for
shared libraries
I < brk
Run-time heap
(created by malloc)
Read/write segment Loaded
(.data, .bss) from
» the
Read-only segment executable
(.init, .text, .rodata) file

Unused
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Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= E.g, mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g., new and garbage collection in Java

m Will discuss simple explicit memory allocation today
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The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

» |f size == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno to ENOMEM

void free (void *p)
= Returns the block pointed at by p to pool of available memory

"= p must come from a previous calltomalloc, calloc, or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero.
" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap
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malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(long n) {
long i, *p;

/* Allocate a block of n longs */
p = (long *) malloc(n * sizeof(long))
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)

pli] = i;
/* Do something with p */

/* Return allocated block to the heap */
free(p) ;
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Sample Implementation

m Code
" File mm-reference.c

= Manages fixed size heap
" Functionsmm malloc, mm free

m Features
= Based on words of 8-bytes each
= Pointers returned by malloc are double-word aligned

= Double word = 2 words

= Compile and run tests with command interpreter
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Visualization Conventions

m Show 8-byte words as squares
m Allocations are double-word aligned.

\ v J g ,_’
Allocated block Free block
(4 words) (2 words) Free word

Allocated word
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Allocation Example

(Conceptual)

f#define SIZ sizeof(size t)

pl = malloc (4*SIZ)

malloc (5*SIZ)

o
N
I

p3 = malloc (6*SIZ)

free (p2)

p4 = malloc (2*SIZ)
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Constraints

m Applications
= Canissue arbitrary sequence of malloc and f£ree requests

= freerequest mustbetoamalloc’d block

m Explicit Allocators

= Can’t control number or size of allocated blocks

" Must respond immediately to malloc requests
= j.e., can’t reorder or buffer requests

" Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory

= Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on 64-bit systems

= Can manipulate and modify only free memory

= Can’t move the allocated blocks once they aremalloc’d

= j.e., compaction is not allowed. Why not?
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Performance Goal: Throughput

m Given some sequence of malloc and free requests:
" Ry Ry . Rip ooy Ry

m Goals: maximize throughput and peak memory utilization

" These goals are often conflicting

m Throughput:
= Number of completed requests per unit time
= Example:
» 5000 malloc calls and 5,000 £ree calls in 10 seconds

= Throughput is 1,000 operations/second
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Performance Goal: Minimize Overhead

m Given some sequence of malloc and free requests:
" Ry Ry ..o Ry ..., Ry

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= j.e., heap only grows when allocator uses sbrk

m Def: Overhead after k+1 requests

" Fraction of heap space NOT used for program data
" Oy= Hi/(maxg P;) —1.0
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Benchmark Example

m Benchmark

syn-array-short
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Trace provided with
malloc lab

Allocate & free 10 blocks
a = allocate
f=free

Bias toward allocate at
beginning & free at end

Blocks number 1-10

Allocated: Sum of all
allocated amounts

Peak: Max so far of
Allocated

Step

1

O 00 NO UL WN

R R R R R R R R R R
OO NOOUL B WNRO

20

th th th th @ Hh Hh @ Hh ® Hh D HO DO HOO OO

Command

0

©O 0t ood OOJOPRLRJIMNMNONOUGEEWWDNDHPR

9904
50084
20
16784

840
3244

2012

33856

136

20

Delta
9904
50084
20
16784
-16784
840
3244
-9904
2012
-20
33856
-50084
136
-33856
-2012
20
-840
-136
-3244
-20

Allocated
9904
59988
60008
76792
60008
60848
64092
54188
56200
56180
90036
39952
40088
6232
4220
4240
3400
3264
20
0

Peak

9904
59988
60008
76792
76792
76792
76792
76792
76792
76792
90036
90036
90036
90036
90036
90036
90036
90036
90036
90036
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Benchmark Visualization

Step Command Delta Allocated Peak 1

1 a 0 9904 9904 9904 9904 0.9

2 a1 50084 50084 59988 59988

T 0.8

3 a2 20 20 60008 60008 3

4 a3 16784 16784 76792 76792 207

5 £ 3 -16784 60008 76792 g 0.6

6 a 4 840 840 60848 76792 2 4 ;

7 a 5 3244 3244 64092 76792 ©

8 £0 -9904 54188 76792 & 0.4

9 a 6 2012 2012 56200 76792 £ 0.3

10 £ 2 20 56180 76792 S .,

11 a 7 33856 33856 90036 90036

12 f£1 -50084 39952 90036 0.1

13 a 8 136 136 40088 90036 0

14 £ 7 -33856 6232 90036 0 0.2 0.4 0.6 0.8 1
15 £ 6 -2012 4220 90036 Normalized Operation Number
16 a 9 20 20 4240 90036

17 £ 4 -840 3400 90036 —e—Data Data Fit

18 £ 8 -136 3264 90036

19 £ 5 -3244 20 90036

20 £9 -20 0 90036 ® Data line shows total allocated data ( P; )

= Data Fit line shows peak of total (max; P;)
" Normalizedin X &Y
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Full Benchmark Behavior

Memory Used / Peak Data
o
N\

0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Operation / Operation Count

m Given sequence of mallocs & frees (40,000 blocks)
= Starts with all mallocs, and shifts toward all frees

m Manage space for all allocated blocks

m Metrics
= Data: P;

= Data fit: max; P,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation
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Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
/\
a N
Internal Internal
—q 4 .
fragmentation FERALEL fragmentation

m Caused by
= Qverhead of maintaining heap data structures
= Padding for alignment purposes
= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure
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Internal Fragmentation Effect

1.0
©
®©
a
=08 /
0
-9
~
3 @ Perfect Fit
&
ZE 06 @ Data Fit
£ Data

o
2
0.4 /

0.2 +—

0.0 -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Operation / Operation Count

m Perfect Fit: Only requires space for allocated data, data
structures, and unused space due to alignment
constraints

" For this benchmark, 1.5% overhead
= Cannot achieve in practice

= Especially since cannot move allocated blocks
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f#define SIZ sizeof(size t)

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc (4*SIZ)

o
N
I

malloc (5*SIZ)

p3 = malloc (6*SIZ)

free (p2)

p4 = malloc(7*s1z) Yikes! (what would happen now?)

m Amount of external fragmentation
depends on the pattern of future requests

® Thus, difficult to measure
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External Fragmentation Effect

1.4
1.2
—

1.0
s
©
a
% 0.8
ﬂJ
-9
~ @ Best Fit
ki
2 @ Perfect Fit
§os AN s Data Fit
£
£ // \ oata

0.4 / \\

0.2 \

0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Operation / Operation Count

m Best Fit: One allocation strategy
" (To be discussed later)

= Total overhead = 8.3% on this benchmark
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Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reuse a block that has been freed?
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Knowing How Much to Free

m Standard method

= Keep the length (in bytes) of a block in the word preceding the
block.

= Including the header
= This word is often called the header field or header

= Requires an extra word for every allocated block

pO
pO = malloc (4*SIZ) 1

48

TN\

block size Payload Padding
(aligned) (for alignment)

free (p0)
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

_____ Need to tag
- A= s A each block as
32 48 32 16 allocated/free
m Method 2: Explicit list among the free blocks using pointers

/\/\

732 48 32| 16 Need space
% for pointers

ﬂﬂﬂﬂﬂ

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

® Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Today

m Basic concepts
m Implicit free lists
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Method 1: Implicit Free List

m For each block we need both size and allocation status

® Could store this information in two words: wasteful!

m Standard trick

= When blocks are aligned, some low-order address bits are always O

" |nstead of storing an always-0 bit, use it as an allocated/free flag
= When reading the Size word, must mask out this bit

1 word
A
/ —~
Size a a = 1: Allocated block
a = 0: Free block
Format of
aIIocZItec:( and Payload Size: total block size
ree piIoCKs
f Payload: application data
(allocated blocks only)
Optional
padding
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Detailed Implicit Free List Example

/ AN 7 RN ,a”/ ~~~‘~~ Rl \\\ End
Start Unused ,/ \‘ ,,/ \\‘//" TNl // s Block
of ‘ 16/0 ‘32/1 ‘64/0 ‘ \32/1 8/1 ||
heap , , :
heap start heap end
' Double-word Allocated blocks: shaded
" aligned Free blocks: unshaded

Headers: labeled with “size in words/allocated bit”
Headers are at non-aligned positions
=» Payloads are aligned
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Implicit List: Data Structures

header

payload

m Block declaration

uint64_t word t;

typedef struct block
{

word t header;

unsigned char payload[0]; // Zero length array
} block t;

m Getting payload from block pointer //block t *block

return (void *) (block->payload);

m Getting header from payload // bp points to a payload

return (block t *) ((unsigned char *) bp
- offsetof(block t, payload));

C function offsetof (struct, member) returns offset of member within struct
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Implicit List: Header access

Size a

m Getting allocated bit from header

return header & 0x1;

m Getting size from header

return header & ~0xflL;

m Initializing header //block t *block

block->header = size | alloc;
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Implicit List: Traversing list

header| payload |unused header| payload
block size >
m Find next block
static block t * (block t *block)
{
return (block t *) ((unsigned char *) block
+ get size(block));
}
270N oIS PP ~- PR
’ S, 7 S - = ’ N End
/ \ ’ S e Sso 4 N
Unused ',' ‘\‘ '/' \\//’ TS o /’, ‘\Block
‘ 16/0 ‘32/1 64/0 ‘ \32/1 8/1 ||
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Implicit List: Finding a Free Block

m First fit:

Search list from beginning, choose first free block that fits:
Finding space for asize bytes (including header):

static block t *find fit(size t asize)
{
block t *block;

for (block = heap start; block != heap end;

block = find next(block)) ({
{

if (!(get_alloc(block))

&& (asize <= get size(block)))
return block;

}
return NULL; // No fit found

}
heap starg-.
/

\ , s

-
.

’

- N~ Ve N
> - ~

/ \

64/0 ‘ \32/1 8/1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:
= Can take linear time in total number of blocks (allocated and free)
" |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
® Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit
= Still a greedy algorithm. No guarantee of optimality
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Comparing Strategies

=

1.0
s
©
a
+ 0.8 F
&
~ @ First Fit
3
2 \ @ Best Fit
§os fect F
§
2

/ \ .
./ S
/ ~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Operation / Operation Count

m Total Overheads (for this benchmark)
= Perfect Fit: 1.6%
= Best Fit: 8.3%
= First Fit: 11.9%
= Next Fit: 21.6%
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Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

T an et aL.  pemmmmmm—

V ”,¢ ~~\y’,¢ \\\p“f‘ ~~ ~~‘,,¢—s>
/32 32 418 16| &/
p
split block(p, 32)
,/”‘ ~~‘~y¢”’ ~~‘~!¢"’— ~\‘\M/’-“\‘,¢’ s
/ e
/)32 32 32 16 [16] V&
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Implicit List: Splitting Free Block

split block(p, 32)

——_————-__-

// Warning: This code is incomplete

static void split block(block t *block, size t asize) {
size t block size = get size(block);

if ((block size - asize) >= min block size) {
write header (block, asize, true);
block t *block next = find next(block) ;

write header (block next, block size - asize, false);
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Implicit List: Freeing a Block

m Simplest implementation:
= Need only clear the “allocated” flag

= But can lead to “false fragmentation”

——————————

. ”¢’ N\‘p”’ \\*f’ \\y,f-s\A[,;—s;}

/)32 32 3}2 16/ |16 %
free (p) _ _ P __

§ ',¢’ s~\~”¢ N\\g’f g ~\\A/’ N\‘,¢’-~\A

ZE 32 32 16| |16] [/

malloc (5*s1z) Yjkes! : :
There is enough contiguous

free space, but the allocator
won’t be able to find it
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Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

-

”,¢ ~\\A”,¢ N\\*”¢ ~~~yl,—\~A’,¢- .
32 32 32 16 16 57/
f logically
free (p) . . P R gone
”’¢’ ‘N\\””¢’ ‘N\\!“‘ ————— ~ .&,«-\\A
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Implicit List: Coalescing

m Join (coalesce) with next block, if it is free
= Coalescing with next block

------
————————
- -~

- S~ a7 Sac Sa
64 32 16 16 57/ )
f logically
free(p) P R gone
e=mTT TS ~—o “,—’ Sy KI-N\A

/| 64 a8 19 [16] &

= How do we coalesce with previous block?
= How do we know where it starts?

= How can we determine whether its allocated?
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Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
" |mportant and general technique!

_——-—--

f ”’¢ ~\~y”¢ NN\&,”‘— ~~~~§.{’,¢ \N\‘
/32 32i32 32:48 4832 3218/
¥ /”‘\~ ,f’w~~s~ ,a”}‘~\~ ,¢’
Header — Size - a = 1: Allocated block
a = 0: Free block
Format of . .
allocated and Payload and Size: Total block size
padding o
free blocks Payload: Application data
(allocated blocks only)
Boundary tag —— Size a
(footer)
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Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40
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Implementation with Footers

header| payload | unused | footer | header| payload
asize >
asize >
«—— dsize
m Locating footer of current block
const size t dsize = 2*sizeof(word t);
static word t *header to footer(block t * )

{
size t asize = get size(block);
return (word t *) (block->payload + asize - dsize);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4
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Implementation with Footers

header footer | header] payload

payload | unused

(—
1 word

m Locating footer of previous block

static word t *find prev footer(block t * )

{
return &(block->header) - 1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42
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Splitting Free Block: Full Version

split block(p, 32)

——_————-__-

L ~ L’ N,
64 1?| 32 32 32 32|16

static void split block(block t *block, size t asize) {
size t block size = get size(block);

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
write footer(block, asize, true);
block t *block next = find next(block) ;
write header (block next, block size - asize, false);
write footer(block next, block size - asize, false);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
_ Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44
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Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—p

n 1 n 0

m2 1 m2 1

m2 1 m2 1
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Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2
—
n 1
m2 0
m2 0 n+m?2 0
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Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—p
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47
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Constant Time Coalescing (Case 4)

ml 0 n+ml+m?2 0
ml 0
n 1
—
n 1
m2 0
m2 0 n+ml+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48
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Heap Structure

- _———. L e, -
- N\ - N\ ~~~~~~~ g
~

Dummy 7\ o ~ JPtias ~ 2 S~ Dummy
Footer ,/ N L7 N -~ T < N Header
Start A P et o 'y
of ‘ 8/1 |6/0 ‘32/1 64/0 32/1 8/1 ||
heap , / , : /
heap start heap end

m Dummy footer before first header
= Marked as allocated

= Prevents accidental coalescing when freeing first block

m Dummy header after last footer

= Prevents accidental coalescing when freeing final block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49
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Top-Level Malloc Code

const size t dsize = 2*sizeof(word t);

void *mm malloc(size t )
( - - round up(n, m)

size t = round up(size + dsize, dsize); -
m *((n+m-1)/m)
block t * = find fit(asize);

if (block == )
return ;

size t = get size(block);
write header (block, block size, ) ;
write footer(block, block size, ) ;

split block(block, asize);

return header to payload(block);
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Top-Level Free Code

void mm free (void *bp)

{

block t * = payload to header (bp) ;
size t = get size(block);

write header (block, size, )
write footer(block, size, )

coalesce block(block) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51
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Disadvantages of Boundary Tags

m Internal fragmentation

Size a

m Can it be optimized?

= Which blocks need the footer tag? Payload and
" What does that mean? padding

Size a

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52
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No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks
m When sizes are multiples of 16, have 4 spare bits

1 word 1 word
/ — ~ / — ~
Size b1 a = 1: Allocated block Size b0
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free
Payload
Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free
Block Block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53
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No Boundary Tag for Allocated Blocks
(Case 1)

orevious ml ?1 ml | ?1
block
block n 11 n 10
being -
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 2)

ml ?1 ml ?1
previous
block
block n 11 n+m2 10
being -
freed
m2 10
next
block m2 10 n+m2 10

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 3)

_ m1l ?0 n+ml ?0
previous

block
ml ?0

block n 01

being -

freed n+ml ?0
m2 11 m2 01

next

block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 4)

orevious m1l 20 n+ml+m?2 ?0
block
ml ?0
block n 01
being —_—
freed
m2 10
next
block m2 10 n+ml+m2 ?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
= Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time £ree is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed.
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Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead
= will depend on placement policy
= First-fit, next-fit or best-fit

m Not used in practice for malloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators
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