Carnegie Mellon

e BRI o

15-213

<CL0 AN g i

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Dynamic Memory Allocation:
Basic Concepts

15-213/18-213/14-513/15-513/18-613:
Introduction to Computer Systems
15th Lecture, October 15, 2019

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.

= for data structures whose size
is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap.

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Carnegie Mellon

Memory
. invisible to
Kernel virtual memory
user code
User stack
(created at runtime) .
«—S3rsp
l (stack
t pointer)
Memory-mapped region for
shared libraries
I < brk
Run-time heap
(created by malloc)
Read/write segment Loaded
(.data, .bss) from
» the
Read-only segment executable
(.init, .text, .rodata) file

Unused

Carnegie Mellon

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= E.g, mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g., new and garbage collection in Java

m Will discuss simple explicit memory allocation today

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

» |f size == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno to ENOMEM

void free (void *p)
= Returns the block pointed at by p to pool of available memory

"= p must come from a previous calltomalloc, calloc, or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero.
" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(long n) {
long i, *p;

/* Allocate a block of n longs */
p = (long *) malloc(n * sizeof(long))
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)

pli] = i;
/* Do something with p */

/* Return allocated block to the heap */
free(p) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sample Implementation

m Code
" File mm-reference.c

= Manages fixed size heap
" Functionsmm malloc, mm free

m Features
= Based on words of 8-bytes each
= Pointers returned by malloc are double-word aligned

= Double word = 2 words

= Compile and run tests with command interpreter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Visualization Conventions

m Show 8-byte words as squares
m Allocations are double-word aligned.

\ v J g ,_’
Allocated block Free block
(4 words) (2 words) Free word

Allocated word

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Allocation Example

(Conceptual)

f#define SIZ sizeof(size t)

pl = malloc (4*SIZ)

malloc (5*SIZ)

o
N
I

p3 = malloc (6*SIZ)

free (p2)

p4 = malloc (2*SIZ)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Constraints

m Applications
= Canissue arbitrary sequence of malloc and f£ree requests

= freerequest mustbetoamalloc’d block

m Explicit Allocators

= Can’t control number or size of allocated blocks

" Must respond immediately to malloc requests
= j.e., can’t reorder or buffer requests

" Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory

= Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on 64-bit systems

= Can manipulate and modify only free memory

= Can’t move the allocated blocks once they aremalloc’d

= j.e., compaction is not allowed. Why not?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

Carnegie Mellon

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
" Ry Ry . Rip ooy Ry

m Goals: maximize throughput and peak memory utilization

" These goals are often conflicting

m Throughput:
= Number of completed requests per unit time
= Example:
» 5000 malloc calls and 5,000 £ree calls in 10 seconds

= Throughput is 1,000 operations/second

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Performance Goal: Minimize Overhead

m Given some sequence of malloc and free requests:
" Ry Ry ..o Ry ..., Ry

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= j.e., heap only grows when allocator uses sbrk

m Def: Overhead after k+1 requests

" Fraction of heap space NOT used for program data
" Oy= Hi/(maxg P;) —1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Benchmark Example

m Benchmark

syn-array-short

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trace provided with
malloc lab

Allocate & free 10 blocks
a = allocate
f=free

Bias toward allocate at
beginning & free at end

Blocks number 1-10

Allocated: Sum of all
allocated amounts

Peak: Max so far of
Allocated

Step

1

O 00 NO UL WN

R R R R R R R R R R
OO NOOUL B WNRO

20

th th th th @ Hh Hh @ Hh ® Hh D HO DO HOO OO

Command

0

©O 0t ood OOJOPRLRJIMNMNONOUGEEWWDNDHPR

9904
50084
20
16784

840
3244

2012

33856

136

20

Delta
9904
50084
20
16784
-16784
840
3244
-9904
2012
-20
33856
-50084
136
-33856
-2012
20
-840
-136
-3244
-20

Allocated
9904
59988
60008
76792
60008
60848
64092
54188
56200
56180
90036
39952
40088
6232
4220
4240
3400
3264
20
0

Peak

9904
59988
60008
76792
76792
76792
76792
76792
76792
76792
90036
90036
90036
90036
90036
90036
90036
90036
90036
90036

14

Carnegie Mellon

Benchmark Visualization

Step Command Delta Allocated Peak 1

1 a 0 9904 9904 9904 9904 0.9

2 a1 50084 50084 59988 59988

T 0.8

3 a2 20 20 60008 60008 3

4 a3 16784 16784 76792 76792 207

5 £ 3 -16784 60008 76792 g 0.6

6 a 4 840 840 60848 76792 2 4 ;

7 a 5 3244 3244 64092 76792 ©

8 £0 -9904 54188 76792 & 0.4

9 a 6 2012 2012 56200 76792 £ 0.3

10 £ 2 20 56180 76792 S .,

11 a 7 33856 33856 90036 90036

12 f£1 -50084 39952 90036 0.1

13 a 8 136 136 40088 90036 0

14 £ 7 -33856 6232 90036 0 0.2 0.4 0.6 0.8 1
15 £ 6 -2012 4220 90036 Normalized Operation Number
16 a 9 20 20 4240 90036

17 £ 4 -840 3400 90036 —e—Data Data Fit

18 £ 8 -136 3264 90036

19 £ 5 -3244 20 90036

20 £9 -20 0 90036 ® Data line shows total allocated data (P;)

= Data Fit line shows peak of total (max; P;)
" Normalizedin X &Y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Full Benchmark Behavior

Memory Used / Peak Data
o
N\

0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Operation / Operation Count

m Given sequence of mallocs & frees (40,000 blocks)
= Starts with all mallocs, and shifts toward all frees

m Manage space for all allocated blocks

m Metrics
= Data: P;

= Data fit: max; P,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1

16

Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
/\
a N
Internal Internal
—q 4 .
fragmentation FERALEL fragmentation

m Caused by
= Qverhead of maintaining heap data structures
= Padding for alignment purposes
= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Internal Fragmentation Effect

1.0
©
®©
a
=08 /
0
-9
~
3 @ Perfect Fit
&
ZE 06 @ Data Fit
£ Data

o
2
0.4 /

0.2 +—

0.0 -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Operation / Operation Count

m Perfect Fit: Only requires space for allocated data, data
structures, and unused space due to alignment
constraints

" For this benchmark, 1.5% overhead
= Cannot achieve in practice

= Especially since cannot move allocated blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

f#define SIZ sizeof(size t)

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc (4*SIZ)

o
N
I

malloc (5*SIZ)

p3 = malloc (6*SIZ)

free (p2)

p4 = malloc(7*s1z) Yikes! (what would happen now?)

m Amount of external fragmentation
depends on the pattern of future requests

® Thus, difficult to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

External Fragmentation Effect

1.4
1.2
—

1.0
s
©
a
% 0.8
ﬂJ
-9
~ @ Best Fit
ki
2 @ Perfect Fit
§os AN s Data Fit
£
£ // \ oata

0.4 / \\

0.2 \

0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Operation / Operation Count

m Best Fit: One allocation strategy
" (To be discussed later)

= Total overhead = 8.3% on this benchmark

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reuse a block that has been freed?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Knowing How Much to Free

m Standard method

= Keep the length (in bytes) of a block in the word preceding the
block.

= Including the header
= This word is often called the header field or header

= Requires an extra word for every allocated block

pO
pO = malloc (4*SIZ) 1

48

TN\

block size Payload Padding
(aligned) (for alignment)

free (p0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

_____ Need to tag
- A= s A each block as
32 48 32 16 allocated/free
m Method 2: Explicit list among the free blocks using pointers

/\/\

732 48 32| 16 Need space
% for pointers

ﬂﬂﬂﬂﬂ

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

® Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Method 1: Implicit Free List

m For each block we need both size and allocation status

® Could store this information in two words: wasteful!

m Standard trick

= When blocks are aligned, some low-order address bits are always O

" |nstead of storing an always-0 bit, use it as an allocated/free flag
= When reading the Size word, must mask out this bit

1 word
A
/ —~
Size a a = 1: Allocated block
a = 0: Free block
Format of
aIIocZItec:(and Payload Size: total block size
ree piIoCKs
f Payload: application data
(allocated blocks only)
Optional
padding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Detailed Implicit Free List Example

/ AN 7 RN ,a”/ ~~~‘~~ Rl \\\ End
Start Unused ,/ \‘ ,,/ \\‘//" TNl // s Block
of ‘ 16/0 ‘32/1 ‘64/0 ‘ \32/1 8/1 ||
heap , , :
heap start heap end
' Double-word Allocated blocks: shaded
" aligned Free blocks: unshaded

Headers: labeled with “size in words/allocated bit”
Headers are at non-aligned positions
=» Payloads are aligned

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Implicit List: Data Structures

header

payload

m Block declaration

uint64_t word t;

typedef struct block
{

word t header;

unsigned char payload[0]; // Zero length array
} block t;

m Getting payload from block pointer //block t *block

return (void *) (block->payload);

m Getting header from payload // bp points to a payload

return (block t *) ((unsigned char *) bp
- offsetof(block t, payload));

C function offsetof (struct, member) returns offset of member within struct

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Implicit List: Header access

Size a

m Getting allocated bit from header

return header & 0x1;

m Getting size from header

return header & ~0xflL;

m Initializing header //block t *block

block->header = size | alloc;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Implicit List: Traversing list

header| payload |unused header| payload
block size >
m Find next block
static block t * (block t *block)
{
return (block t *) ((unsigned char *) block
+ get size(block));
}
270N oIS PP ~- PR
’ S, 7 S - = ’ N End
/ \ ’ S e Sso 4 N
Unused ',' ‘\‘ '/' \\//’ TS o /’, ‘\Block
‘ 16/0 ‘32/1 64/0 ‘ \32/1 8/1 ||

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Implicit List: Finding a Free Block

m First fit:

Search list from beginning, choose first free block that fits:
Finding space for asize bytes (including header):

static block t *find fit(size t asize)
{
block t *block;

for (block = heap start; block != heap end;

block = find next(block)) ({
{

if (!(get_alloc(block))

&& (asize <= get size(block)))
return block;

}
return NULL; // No fit found

}
heap starg-.
/

\ , s

-
.

’

- N~ Ve N
> - ~

/ \

64/0 ‘ \32/1 8/1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16/0 32/1

AN

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:
= Can take linear time in total number of blocks (allocated and free)
" |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
® Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit
= Still a greedy algorithm. No guarantee of optimality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Comparing Strategies

=

1.0
s
©
a
+ 0.8 F
&
~ @ First Fit
3
2 \ @ Best Fit
§os fect F
§
2

/ \ .
./ S
/ ~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Operation / Operation Count

m Total Overheads (for this benchmark)
= Perfect Fit: 1.6%
= Best Fit: 8.3%
= First Fit: 11.9%
= Next Fit: 21.6%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

T an et aL. pemmmmmm—

V ”,¢ ~~\y’,¢ \\\p“f‘ ~~ ~~‘,,¢—s>
/32 32 418 16| &/
p
split block(p, 32)
,/”‘ ~~‘~y¢”’ ~~‘~!¢"’— ~\‘\M/’-“\‘,¢’ s
/ e
/)32 32 32 16 [16] V&

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Implicit List: Splitting Free Block

split block(p, 32)

——_————-__-

// Warning: This code is incomplete

static void split block(block t *block, size t asize) {
size t block size = get size(block);

if ((block size - asize) >= min block size) {
write header (block, asize, true);
block t *block next = find next(block) ;

write header (block next, block size - asize, false);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:
= Need only clear the “allocated” flag

= But can lead to “false fragmentation”

——————————

. ”¢’ N\‘p”’ *f’ \\y,f-s\A[,;—s;}

/)32 32 3}2 16/ |16 %
free (p) _ _ P __

§ ',¢’ s~\~”¢ N\\g’f g ~\\A/’ N\‘,¢’-~\A

ZE 32 32 16| |16] [/

malloc (5*s1z) Yjkes! : :
There is enough contiguous

free space, but the allocator
won’t be able to find it

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

-

”,¢ ~\\A”,¢ N*”¢ ~~~yl,—\~A’,¢- .
32 32 32 16 16 57/
f logically
free (p) . . P R gone
”’¢’ ‘N\\””¢’ ‘N\\!“‘ ————— ~ .&,«-\\A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Implicit List: Coalescing

m Join (coalesce) with next block, if it is free
= Coalescing with next block

————————
- -~

- S~ a7 Sac Sa
64 32 16 16 57/)
f logically
free(p) P R gone
e=mTT TS ~—o “,—’ Sy KI-N\A

/| 64 a8 19 [16] &

= How do we coalesce with previous block?
= How do we know where it starts?

= How can we determine whether its allocated?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
" |mportant and general technique!

_——-—--

f ”’¢ ~\~y”¢ NN\&,”‘— ~~~~§.{’,¢ \N\‘
/32 32i32 32:48 4832 3218/
¥ /”‘\~ ,f’w~~s~ ,a”}‘~\~ ,¢’
Header — Size - a = 1: Allocated block
a = 0: Free block
Format of . .
allocated and Payload and Size: Total block size
padding o
free blocks Payload: Application data
(allocated blocks only)
Boundary tag —— Size a
(footer)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

https://canvas.cmu.edu/courses/10968

Carnegie Mellon

Implementation with Footers

header| payload | unused | footer | header| payload
asize >
asize >
«—— dsize
m Locating footer of current block
const size t dsize = 2*sizeof(word t);
static word t *header to footer(block t *)

{
size t asize = get size(block);
return (word t *) (block->payload + asize - dsize);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Implementation with Footers

header footer | header] payload

payload | unused

(—
1 word

m Locating footer of previous block

static word t *find prev footer(block t *)

{
return &(block->header) - 1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Splitting Free Block: Full Version

split block(p, 32)

——_————-__-

L ~ L’ N,
64 1?| 32 32 32 32|16

static void split block(block t *block, size t asize) {
size t block size = get size(block);

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
write footer(block, asize, true);
block t *block next = find next(block) ;
write header (block next, block size - asize, false);
write footer(block next, block size - asize, false);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
_ Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—p

n 1 n 0

m2 1 m2 1

m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2
—
n 1
m2 0
m2 0 n+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—p
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Constant Time Coalescing (Case 4)

ml 0 n+ml+m?2 0
ml 0
n 1
—
n 1
m2 0
m2 0 n+ml+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Heap Structure

- _———. L e, -
- N\ - N\ ~~~~~~~ g
~

Dummy 7\ o ~ JPtias ~ 2 S~ Dummy
Footer ,/ N L7 N -~ T < N Header
Start A P et o 'y
of ‘ 8/1 |6/0 ‘32/1 64/0 32/1 8/1 ||
heap , / , : /
heap start heap end

m Dummy footer before first header
= Marked as allocated

= Prevents accidental coalescing when freeing first block

m Dummy header after last footer

= Prevents accidental coalescing when freeing final block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Top-Level Malloc Code

const size t dsize = 2*sizeof(word t);

void *mm malloc(size t)
(- - round up(n, m)

size t = round up(size + dsize, dsize); -
m *((n+m-1)/m)
block t * = find fit(asize);

if (block ==)
return ;

size t = get size(block);
write header (block, block size,) ;
write footer(block, block size,) ;

split block(block, asize);

return header to payload(block);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Top-Level Free Code

void mm free (void *bp)

{

block t * = payload to header (bp) ;
size t = get size(block);

write header (block, size,)
write footer(block, size,)

coalesce block(block) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Disadvantages of Boundary Tags

m Internal fragmentation

Size a

m Can it be optimized?

= Which blocks need the footer tag? Payload and
" What does that mean? padding

Size a

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks
m When sizes are multiples of 16, have 4 spare bits

1 word 1 word
/ — ~ / — ~
Size b1 a = 1: Allocated block Size b0
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free
Payload
Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free
Block Block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 1)

orevious ml ?1 ml | ?1
block
block n 11 n 10
being -
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 2)

ml ?1 ml ?1
previous
block
block n 11 n+m2 10
being -
freed
m2 10
next
block m2 10 n+m2 10

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 95

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 3)

_ m1l ?0 n+ml ?0
previous

block
ml ?0

block n 01

being -

freed n+ml ?0
m2 11 m2 01

next

block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 4)

orevious m1l 20 n+ml+m?2 ?0
block
ml ?0
block n 01
being —_—
freed
m2 10
next
block m2 10 n+ml+m2 ?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
= Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time £ree is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead
= will depend on placement policy
= First-fit, next-fit or best-fit

m Not used in practice for malloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

