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Cache Memories
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Today

m Cache memory organization and operation
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Recall: Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" [tems with nearby addresses tend
to be referenced close together in time
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Recall: Memory

Hierarchy 0: S
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
costlier from the L2 cache.
(per byte) L2: L2 cache
(SRAM) _
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage 5. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)
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Recall: General Cache Concepts

Smaller, faster, more expensive

Cache 4 9 14 3 memory caches a subset of
the blocks

Data is copied in block-sized

4 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0000000000000 0000 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6



Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 2 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4q 5 6 7
8 9 10 11
12 13 14 15
O 0000000000000 OCVDOCG® OO
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General Cache Concepts: Miss

Cache

Memory
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Request: 12

8 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)
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Recall: General Caching Concepts:
3 Types of Cache Misses

m Cold (compulsory) miss

" Cold misses occur because the cache starts empty and this is the first
reference to the block.

m Capacity miss
" QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

" Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

" Hold frequently accessed blocks of main memory
m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file
Cache <—>
memory / |
ﬁ System bus  Memory bus
10 ] ,/[ N
Bus interface I./O <:> amn
bridge memory
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Recall: Modern CPU Design

Instruction Control
Control .
Instruction

Cache

: Retirement

é. ...... Unit

: Register Instruction Instructions
File Decode

Operations
Register Updates Prediction OK?

1

el Functional
Units

Operation Results
Addr. Addr.
Data Data

Execution
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CPU chip

What it Really Looks Like

Register file
Cache <—> |:> ALU
memory C

Bus interface

HOH cnEIR

| Shared L3 Cache |8

& I/0

WAt

Shared E

£ L3 Cache

m”. (|

.3 e

n i imn
N
)

| HyperTransport™ Phy |
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Ed|t|on 12




What it Really Looks Like (Cont.)

Intel Sandy Bridge
Processor Die

""" L1: 32KB Instruction + 32KB Data
§ L2: 256KB

L3: 3-20MB

.........
‘‘‘‘‘‘

'''''''''''''
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General Cache Organization (S, E, B)

E = 2¢ lines per set

A
e ~N
4 «—
ecooe —
o0 00
S=Zssets< XXX
OO0 000000000000 00000 0OCOCGEOGEOSEOSOSOONO
o000
\.
Cache size
=S x E x B data bytes
v tag 011]2] sece- B-1
T — —
L v
valid bit B = 2" bytes per cache block (the data)
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caChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
- A ~ * Locate data starting
e at offset
000

Address of word:
t bits s bits | b bits

S=Zssets< S~

oo tag set block
index offset

data begins at this offset

v tag O|1]|2] e B-1

N— 7

valid bit B = 2P bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

( Address of int:
t bits 0..01 | 100

v tag 0]112|3|4]|5]|6]|7

find set
S=Zssets<
v tag 0]112|3|4]|5]|6]|7
000000 000OCGCOGEOGOEOOGEOGOEOGOEOSOOOSOO
Vv tag 0|1]2)13]|4]|5]|6]7
\.
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v| | tag | [o|1]2]3]|4a]5]6]7

block offset
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0]1112(|3|4]|5]|6]|7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced
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Direct-Mapped Cache Simulation

t=

1

s=2

b

1

X

XX

X

Set 0
Setl
Set 2
Set 3

4-bit addresses (address space size M=16 bytes)
S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000,] miss

v Tag Block

1 0 M[O-1]

0

0

1 0 M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

2 lines per set t bits 0..01 | 100
A
r ~N
(
'} tag 0|1]2]|3]|4]|5]|6]7 v tag 0|1]2]|3]|4]|5]|6]7
v] [[tag ] [o]2]2]3]a]s]6]7]| |[v] [ tae ] [o]1]2]3]4]5]6]7 find set
< v tag | |0]1]12]3]4]5]6]7 v tag | |0]1]2]3]4]5]6]7
OO0 000000000000 OGOGEOCEOOEOOEOGOEOEOEOEONONOEOEOEOEOEOEOEOOEOEOEOOTOEOOOOO
v| [ tag | [o]1]2]3]a]|5]6{7]]| ||v] | tag | [0]1]2]3]4a]5]|6]7
\.
S sets
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0]1]2]3]14]5]6]7 v tag 011]2]3]14|5]6]7

block offset
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v| [ tag | [o]1{2]3]a[5]6]7]| [|v] | teg | |0]2]2]3|4]5]6]7

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000, hit

v Tag Block
1 00 M[0-1]
1 10 M[8-9]

Set 0

cerq | L1101 |M[6-7]
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What about writes?

m Multiple copies of data exist: L‘% ‘; tag | |0]1]2] e
= |1, 12, L3, Main Memory, Disk o ~—
y valid bit dirty bit B = 2% bytes

m What to do on a write-hit?

" Write-through (write immediately to memory)
" Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
" No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
" Write-back + Write-allocate
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Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

ﬂitandard Method: \
Middle bit indexing

( Address of int:
t bits 0..01 | 100

v tag 0]112|3|4]|5]|6]|7

\ find set /

S = 2°sets <
- a8 011121313 [>]6]7 ﬁlternative Method: \
High bit indexing
OO0 00000 00O0OCOGOEOGOEOGOEOGOEOGOEOEOSONOSNONO
Address of int:
v tag 0]112|3|4]|5]|6]|7 1...11 t bits 100
\ :
find set

\_ /
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lllustration of Indexing 0000xx
Approaches Pope
0010xx

m 64-byte memory 001 Lxx
" 6-bit addresses 01003

m 16 byte, direct-mapped cache 01013k
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set 0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx
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Middle Bit Indexing

m Addresses of form TTSSBB

= TT Tag bits
" SS Set index bits
" BB Offset bits

m Makes good use of spatial locality

Set O

Set1l

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx
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High Bit Indexing

m Addresses of form SSTTBB

" SS Set index bits
= TT Tag bits
" BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

Set O

Set1l

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx
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Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€85 €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
eee Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache
(shared by all cores)

Block size: 64 bytes for
all caches.

Main memory
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Example: Core i7 L1 Data Cache

>
>

&0

S\

. . E = 2¢ lines per set ‘?‘6‘. Oe'o 6\(\

32 kB 8-way set associative 7 A S 0 [0 [0000
64 bytes/block I [ CEERY I R é ; 8823
47 bit address range | | |-« - IR 3 [ 3 |0011
4 [ 4 [0100

S=255ets< I ” Io..o: 5 5 0101

B= 6 | 6 | 0110
S_ S- 0000000000000 OC0FOCGOCFOGNONOIOGNOGIONONOGNONOGO '7 '7 0111
= , O 8 | 8 [ 1000
— - (| J | 9 [ 9 [ 1001

’ A [10]1010

C= Cache size: B (111011
LT,.l [we | [o]]2] To1] C =S5 xE x B data bytes Cc [12 1100

D [13] 1101

e — E |14 | 1110

valid bi F |15 1111

Address of word:
t bits s bits | b bits

—
= i:g:x :flfscelfc Stack Address: Block offset: 0x??
0x00007£7262ale010 Set index: 0x?°?
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits
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Example: Core i7 L1 Data Cache

E = 2¢ lines per set
A

32 kB 8-way set associative - ~ 0 [0 [0000
s
64 bytes/block I | Y = T
47 bit address range | | |-« - IR 2 2 8%(1)
B =64 S=2sets{ | | oo ] 5 |5 | 0101
6 | 6 | 0110
S = 64’ s = 6 ........................... 7 7 0111
. 8 | 8 | 1000
E=8,e=3 9 J G — 9 [ 9 [1001
10 | 1010
C=64x64x8=32,768 Cache size: 5111011
C=SxExBdatab C (12| 1100
[o] [ e ] [ofafo] ~]e1] X ExBdata bytes D |13 | 1101
o S———— E |14 1110
valid bit F |15 1111
Address of word:
t bits s bits | b bits
tag set block
index offset Stack Address: Block offset: 0x10
0x00007£7262ale010 Set index: 0x0
Block offset: 6 bits Tag: O0x7£7262ale

Set index: 6 bits
Tag: 35 bits

"\

0000 0001 0OOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Cache Performance Metrics

m Miss Rate

® Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time

" Time to deliver a line in the cache to the processor

= includes time to determine whether the line is in the cache
= Typical numbers:

= 4 clock cycle for L1

= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

m Huge difference between a hit and a miss

"= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

m Make the common case go fast

®" Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968
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Today

m Performance impact of caches

®" The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37



Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array "data" with stride of "stride", Call test () with many
* using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4d=stride*4;
long acc0 = 0, accl = 0, acc2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */

for (i = 0; i < limit; i += sx4) { 1. Call test() once to

acc0 = accO + data[i]; warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read

: throughput(MB/s)

/* Finish any remaining elements */
for (; 1 < length; i++) {
acc0 = accO0 + data[i];

}

return ((accO0 + accl) + (acc2 + acc3l));

} mountain/mountain.c
38
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Core i7 Haswell
1 2.1 GHz
The Memory Mountaln 32 KB L1 d-cache
256 KB L2 cache
Aggress{ve 8 MB L3 cache
prefetching 54 B block size

g
m
= 12000
5
£ 10000 ‘ B
=2
£ 8000 - A Ridges
T 000 \ - 12 ? of temporal
@ localit
& 7z ocality
4000
2000 + A
Slopes /;
of spatial < o "ok
locality s3 128k

s5 512k

2m

s/

Stride (x8 bytes) 8m

Size (bytes)

32m

11
S 428m
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Today

= Rearranging loops to improve spatial locality
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Matrix Multiplication Example

m Description:
= Multiply N x N matrices

" Matrix elements are
doubles (8 bytes)

= O(N3) total operations

" N reads per source
element

" N values summed per
destination

= but may be able to
hold in register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variable sum

/* ijk */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; Jj++) { /
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j];
c[i][j] = sum;

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

m Assume:
" Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
® Cache is not even big enough to hold multiple rows

m Analysis Method:

" Look at access pattern of inner loop

C A B
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
® each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][i];
= accesses successive elements
" if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;;) / B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[i] [0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */

_ _ _ Inner loop:
for (i=0; i<n; i++) {

Carnegie Mellon

for (j=0; j<n; Jj++) { *
sum = 0.0; L;;;} ,
(i,*)
for (k=0; k<n;
A B

wise
Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(i)

k++)
sum += a[i]l [k] * b[k][]];
clil[3] = sum;
} .
} matmult/mm.c § Row-wise Column-

C

|

Fixed

44
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Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i k) Efffj(K*)L;;;J
r = a[i] [k]; O (i,*)
B C

for (3j=0; j<n; j++) A
c[1][]J] += r * Db[k][]]: ‘ ‘ ‘

Inner loop:

matmult/mm. c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* ki */ Inner loop:
for (3j=0; j<n; j++) { (*,k) (*,J)
for (k=0; k<n; k++) { j:| (kj) |I
r = b[k][j]; n
for (i=0; i<n; i++) A B C
c[1][]J] += al[i][k] * r; ‘ ‘
}
matmult/mm.cf] Column- Fixed Column-
wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][j];
c[i][j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (3=0; j<n; Jj++)
c[i][J] += r * b[k][]]’
}
}

for (3=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]];
for (i=0; i<n; i++)
c[i][j] += ali]l [k] * r;

ijk (& jik):
¢ 2 loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
e 2 loads, 1 store
* avg misses/iter = 0.5

jki (& kji):
e 2 loads, 1 store
* avg misses/iter = 2.0

47
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Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100
jki /kji (2.0)

—=jki
--kji
-1k
—jik
—t=ki j
=ik j

ijk /jik (1.25)

10

_——

kij/ikj (0.5)

1 | | || || || || || || || || || || || || ||

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)
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Today

® Using blocking to improve temporal locality
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Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; Jj++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X
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Cache Miss Analysis

m Assume:

" Matrix elements are doubles
® Cache block = 8 doubles

" Cache size C << n (much smaller than n)

m First iteration: r ~

" n/8 +n=9n/8 misses

I
X

" Afterwards in cache:
(schematic) . ——

I
X

8 wide
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Cache Miss Analysis

m Assume:

" Matrix elements are doubles
® Cache block = 8 doubles

" Cache size C << n (much smaller than n)

n
m Second iteration: —
" Again: -
n/8 + n =9n/8 misses _ X

8 wide

m Total misses:
= 9n/8 n?=(9/8) n3
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Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=B)

for (j = 0; jJ < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; il++)
for (j1 = j; jl < j+B; jl++)
for (k1 = k; k1l < k+B; kl++)
c[il*n+3j1l] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm. c

jl
C a b Cc
= X +
] 11 [

Block size B x B 53
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Cache Miss Analysis

m Assume:
® Cache block = 8 doubles
" Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

m First (block) iteration: P e inCks
" B2/8 misses for each block B BEEEE B
= 2n/B x B%/8 = nB/4 _ X =
(omitting matrix c) - | ]

Block size B x B

. :
Afterwards in cache [] EEEEE

(schematic)

X
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Cache Miss Analysis

m Assume:
® Cache block = 8 doubles

" Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A
= Same as first iteration ] BEEEE
= 2n/Bx B2/8 =nB/4 _ X
m Total misses: Block size B x B

= nB/4 * (n/B)2 =n3/(4B)
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Blocking Summary

m No blocking: (9/8) n® misses
m Blocking: (1/(4B)) n® misses

m Use largest block size B, such that B satisfies 3B2 < C

" Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n2, computation 2n3
= Every array elements used O(n) times!
® But program has to be written properly
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Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!

" Focus on the inner loops, where bulk of computations and memory
accesses occur.

" Try to maximize spatial locality by reading data objects sequentially
with stride 1.

" Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.
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Supplemental slides
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The Memory Mountain

Aggressive
prefetching

Slopes

of spatial
locality

N
=
o
o
o

Carnegie Mellon

Core i5 Haswell
3.1 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Ridges

Read throughput (MB/s)

/ locality

s7
Stride (x8 bytes)

of temporal
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Cache Capacity Effects from Core i7 Haswel

3.1 GHz

Memory Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size
25000
0
m
gzoooo
= .
a Main
5 15000 13 L2 L1
- .
o Memory Slice through
=
ha memor
® 10000 1 y i
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5000 4+ — I
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Cache Block Size Effects from Core i7 Haswell

2.26 GHz
1 32 KB L1 d-cache
Memory Mountain g Ly
8 MB L3 cache
Throughput for size = 128K 64 B block size
35000
30000 /\
\Miss rate =s/8
25000 \/\
g 200 \ Miss rate = 1.0
S~
o
S 15000 l =0=Measured
/l
10000
5000
0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 sl11 s12 Strides
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Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K
35000

Carnegie Mellon

Core i7 Haswell
2.26 GHz
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2008 Memory Mountain
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; Jj++) {

for (i=0; i<n; i++) { * i
sum = 0.0; L;;;J. ﬁ]ii: (&D
for (k=0; k<n; k++) (i,*)
sum += a[i] [k] * b[k][]]’ A B C

c[i] [§] = sum ‘ ‘ ‘

matmult/mm. c Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0
Block size = 32B (four doubles)
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Matrix Multiplication (ik j)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i, k) E(k'*)g
r = a[i] [k]; o (i,*)
B C

for (j=0; j<n; J++) A
c[i][jJ] += r * b[k][]]- ‘ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *
r = b[k][]j]; (k.J)
for (i=0; i<n; i++) .

Inner loop:

. . A B C
c[i][J] += ali]l[k] * r; ‘ ‘ ‘
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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