Carnegie Mellon

Malloc Bootcamp

Minji, Pallavi, Gauri

October 27, 2019

Carnegie Mellon

Agenda

= Conceptual Overview
= Explicit List
= Segregated list
= Splitting, coalescing
= Hints on hints
= Advanced debugging with GDB

* Fun GDB tricks
= Writing a good heap checker

= Appendix

Carnegie Mellon

Conceptual Outline

Me: *recompiles code |
know damn well | didn't change*

code breaks
Also me:

A

Carnegie Mellon

Dynamic Memory Allocation

= Used when
= we don't know at compile-time how much memory we will need
= When a particular chunk of memory is not needed for the entire run
= lets us reuse that memory for storing other things
= Important terms:
= malloc/calloc/realloc/free
= mem_sbrk
= payload
= fragmentation (external vs internal)
= Splitting / coalescing

Carnegie Mellon

mm_init
= Why prologue footer and Prologue footer i
epilogue header? Epilogue header n*e
= Payload must be 16-byte
aligned)
Prologue footer
= But, the size of payload doesn't Size = chunk size | |" n+8
have to be a multiple of 16 - just rounded 9| n+16
the block does! v
= Things malloc’d must be within Size = chunk size | g
the prologue and epilogue rounded up
Epilogue header 5

Carnegie Mellon

If We Can't Find a Usable Free Block

=« Assume an implicit list implementation
= Need to extend the heap

tack
= mem_sbrk() e
= sbrk(num_bytes) allocates space and iL
returns pointer to start ﬁ
= sbrk(0) returns a pointer to the end of - current brk
the current heap % pointer
eap
= For speed, extend the heap by a
little more than you need uninitialized data
immediately initialized data
d
= Use what you need out of the new brogram core
space, add the rest as a free block O 5

~“ \AWhat ara enme tradanffe vvAllr ~an

Carnegie Mellon

Tracking Blocks: Explicit

I—-'S'i;/laintain a list of free blocks instead of all blocks
= means we need to store forward/backward pointers, not just sizes
= we only track free blocks, so we can store the pointers in the payload area!
= need to store size at end of block too, for coalescing

allocated block free block
size 1 size 0
next
prev
payload and
padding
unused
size 1 size 0

Splitting a Block

=« If the block we find is larger - 5 — 1
than we r.1eed, split it and leave next vayload
the remainder for a future prev -
allocation m o

= explicit lists: correct previous and — next
next pointers orev
= Segregated lists: same as
explicit

« When would we not split a n 0 n-m 0

block?

Coalescing Memory

« Combine adjacent blocks if both are free

« explicit lists: look forward and backward in the heap, using block
sizes, not next/prev

= Four cases:

Allocated Allocated Free Free

block to

be freed Allocated Free Allocated Free

Carnegie Mellon

Coalescing Memory

m1 0 n+m1 0 m1 0 n+m1+m2 |0
next next next next
prev prev prev prev
m1 0 m1 0
n n
n 1 n+m1 0 n
m2 1 m2 1 m2 0
next
payload payload Drev
m2 1 m2 1 m2 0 n+tm1+m2 |0

10

Design Considerations

« Finding a matching free block

=« First fit vs. next fit vs. best fit vs. “good enough” fit

= continue searching for a closer fit after finding a big-enough free
block?

= Free block ordering
« LIFO, FIFO, or address-ordered?
= When to coalesce
= While freeing a block or while searching for free memory?
=« How much memory to request with sbrk()
= larger requests save time in system calls but increase maximum
memory use 11

Carnegie Mellon

Hints on hints

For the final, you must greatly increase the utilization and keep a high
throughput.

e Reducing external fragmentation requires achieving something closer
to best-fit allocated
o Using a better fit algorithm
o Combine with a better data structure that lets you run more
complex algorithms

e Reducing internal fragmentation requires reducing data structure
overhead and using a ‘good’ free block

12

Carnegie Mellon

Segregated Lists

« Multiple explicit lists where the free blocks are of a certain size range

* Increases throughput and raises probability of choosing a better-sized
block

* Need to decide what size classes (only 128 bytes of stack space)
o Diminishing returns
o What do you do if you can’t find something in the current size class?

RootSizeClass1 -> free-block 1 -> free-block 2 -> free-block 3 ->
RootSizeClass2 -> free-block 1 -> free-block 2 -> free-block 3 -> ...
RootSizeClass3 -> free-block 1 -> free-block 2 -> free-block 3 -> ...

13

Carnegie Mellon

Modularity and Design

e Now you need to have more than one list
o List operations are the same for all lists
m Insert
m Remove
o Deciding which size class a block should go into
m 14 if statements :(
m A small const array of sizes + a loop :)
e It would be quite painful to maintain copy-pasted code
o Abstractions are nice - it's what CS is all about!

14

Carnegie Mellon

Modularity and Design

e Make sure you have modular, extensible code
o It will save you a lot of time spent debugging and style points
o It will make you happy when you come back to your code
m In 6 days when you start the final submission
m Orin 6 hours if you're missing sleep - please get some rest!
o It will make it easier to explain to students when you become a TA later :)
e Labs in this course are NOT meant to be done in one sitting
e Labs in this course are NOT meant to be done in 2-3 nights
e Plan ahead, leave plenty of time for design
o Measure twice, cut once
e Take a break between sittings
o Your brain can keep working subconsciously
o Leave time for “aha!” moments

15

Coalescing Memory

« Combine adjacent blocks if both are free

= segregated lists: look forward and back using block sizes, then

= Use the size of the coalesced block to determine the proper list
e \What else might you need to do to maintain your seglists?
= Insert into list using the insertion policy (LIFO, address-ordered, etc.)

= Four cases:

Allocated Allocated Free Free

block to

be freed Allocated Free Allocated Free

16

Eliminate footers in allocated blocks

Reduces internal fragmentation (increase
utilization)
Why do we need footers?

o Coalescing blocks

o What kind of blocks do we coalesce?
Do we need to know the size of a block if we're not

going to coalesce it?
Based on that idea, can you design a method that
helps you determine when to coalesce?
o Hint: where could you store a little bit of extra
information for each block?

m1

next

prev

m1

m2

payload

m3

payload

Carnegie Mellon

free
blocks
still have
footers

o

allocated
blocks
don’t
have
footers!

Y Za

17

Carnegie Mellon

Coalescing Memory

« Combine adjacent blocks if both are free

« footerless: if free, obtain info from footer then use next/prev

= Four cases:

block to

be freed

Allocated

Allocated

Free

Free

Allocated

Free

Allocated

Free

18

Decrease the minimum block size

e Reduces internal fragmentation (increase

utilization)
e Currently, min block size is 32. header block size... F
o 8 byte header potential payload space (16)
o 16 byte payload (or 2 8 byte pointers for free)
o 8 byte footer footer block size... F
e If you just need to malloc(5), and the payload size
is 16 bytes, you waste 11 bytes. header block size... A
e Must manage free blocks that are too small to hold _
the pointers for a doubly linked free list bytes wasted (11)
/ footer block size... A

9 bytes are wasted!
How can we prevent this?

19

Carnegie Mellon

Debugging: GDB & The Almighty Heap Checker

When your scattered print statements
don't reveal where the error is

.
- »

¥ 3 -

All n'ght-,‘ then. Keep your secrets.
-~

ol

E.. ALY 4

Carnegie Mellon

What's better than printf”? Using GDB

e Use GDB to determine where segfaults happen!
e gdb mdriver will open the malloc driver in gdb
o Type run and your program will run until it hits the segfault!
e step/next - (abbrev. s/n) step to the next line of code
o next steps over function calls
e finish - continue execution until end of current function, then break
e print <expr> - (abbrev. p) Prints any C-like expression (including
results of function calls!)
o Consider writing a heap printing function to use in GDB!
e X <expr> - Evaluate <expr> to obtain address, then examine memory
at that address
o X /a <expr> - formats as address

o See help p and help x for information about more formats
21

Using GDB - Fun with frames

m backtrace - (abbrev. bt) print call stack up until current function
m backtrace full - (abbrev. bt full) print local variables in each frame

(gdb) backtrace

#0 find_fit

(...)

mm_malloc (...)

#2 0x0000000000403352 in
eval_mm_valid (...) #3 run_tests (...)

#4 0x0000000000403c39 in main (...)

m frame 1 - (abbrev. f 1) switch to mm_malloc’s stack frame

m Good for inspecting local variables of calling functions o

Using GDB - Setting breakpoints/watchpoints

m break mm_checkheap - (abbrev. b) break on “mm_checkheap()”
m b mm.c:25 - break on line 25 of file “mm.c” - very useful!
m b find_fit if size == 24 - break on function “find_fit()” if the local
variable “size” is equal to 24 - “conditional breakpoint”

m watch heap _listp - (abbrev. w) break if value of “heap _listp” changes -
“watchpoint”
m w block == 0x80000010 - break if “block” is equal to this value
m w *0x15213 - watch for changes at memory location 0x15213
m Can be very slow

m rwatch <thing> - stop on reading a memory location

m awatch <thing> - stop on any memory access
23

Heap Checker

= int mm_checkheap(int verbose);

= critical for debugging

= write this function early!

= Update it when you change your implementation
= check all heap invariants, make sure you haven't lost track of any part

of your heap
= check should pass if and only if the heap is truly well-formed

= should only generate output if a problem is found, to avoid cluttering up
your program's output

= meant to be correct, not efficient
=« call before/after major operations when the heap should
be well-formed 24

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level

« What are some things which should always be true of every block in
the heap?

25

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level

= header and footer match
= payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level

» What are some things which should always be true of every
element of a free list?

26

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level

= header and footer match
= payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level

= next/prev pointers in consecutive free blocks are consistent

= NO allocated blocks in free list, all free blocks are in the free list

= N0 cycles in free list unless you use a circular list

= each segregated list contains only blocks in the appropriate size
class

= Heap level
» What are some things that should be true of the heap as a whotg?

Carnegie Mellon

Heap Invariants (Non-Exhaustive)
= Block level

« header and footer match
= payload area is aligned, size is valid
= No contiguous free blocks unless you defer coalescing

= List level

= next/prev pointers in consecutive free blocks are consistent

= No allocated blocks in free list, all free blocks are in the free list

= NO cycles in free list unless you use a circular list

= each segregated list contains only blocks in the appropriate size
class

= Heap level

=« all blocks between heap boundaries, correct sentinel blocks (if
used) 29

How to Ask for Help

e Be specific about what the problem is, and how to cause it

o BAD: “My program segfaults.”
o GOOD: “I ran mdriver in gdb and it says that a segfault occurred due to

an invalid next pointer, so | set a watchpoint on the segfaulting next
pointer. How can | figure out what happened?”

o GOOD: “My heap checker indicates that my segregated list has a block
of the wrong size in it after performing a coalesce(). Why might that be
the case?”

o What sequence of events do you expect around the time of the error?
What part of the sequence has already happened?

e Have you written your mm_checkheap function, and is it working?

o We WILL ask to see it!

e Use a rubber duck!

29

Carnegie Mellon

If You Get Stuck

mPlease read the writeup!

=« CS:APP Chapter 9

= View lecture notes and course FAQ
at _http://www.cs.cmu.edu/~213

« Office hours Sunday through Friday 5:30-9:30pm in GHC
5207

« Post a private question on Piazza

« Obtain a rubber duck at
https://tinyurl.com/malloc-f18

30

APPENDIX

31

Carnegie Mellon

Anonymous Structs/Unions

struct
struct A { name struct A {
Same idea with unions. \\ int x; 7 int x;
For the difference struct B { struct B {
between unions and int y; int y;
structs, refer to the C Flost s float z:
bootcamp slides. } my b; s
my a; my a;
b w member s
name
e What is the type of x? int
e How do we access x ormy_a? my a.x
e What is the type of my b? struct B
struct B
e How do we access y of my a? my a.my b.y

32
my a.y

Carnegie Mellon

Zero-Length Arrays

struct line {
int length;
char contents[0];

¥

int main() {
struct line my line;
printf (“sizeof (contents) = %$zu\n”, (L.contents)) ;
printf (“sizeof (struct line) = %zu\n”, (struct line));

It's a GCC extension - not part of the C specification!
Must be at the end of a struct / union

It simply allows us to represent variable-length structures
sizeof on a zero-length array returns zero

33

Internal Fragmentation

=« Occurs when the payload is smaller than the block size

= due to alignment requirements
= due to management overhead
= as the result of a decision to use a larger-than-necessary block

=« Depends on the current allocations, i.e. the pattern of previous
requests

34

Carnegie Mellon

Internal Fragmentation

« Due to alignment requirements — the allocator doesn't know
how you'll be using the memory, so it has to use the strictest

alignment:
= Void *m1 = malloc(13); void *m2 = malloc(11);
= m1 and m2 both have to be aligned on 8-byte boundaries

.‘Ien1pay|oad1Ien2pay|oad2

35

Carnegie Mellon

External Fragmentation

= Occurs when the total free space is sufficient, but no single
free block is large enough to satisfy the request
= Depends on the pattern of future requests

=« thus difficult to predict, and any measurement is at best an estimate
= Less critical to malloc traces than internal fragmentation

pS = malloc(4)

free(p1)

p6 = malloc(5) Oops! Seven bytes available, but not in one chunk....

36

Carnegie Mellon

C: Pointer Arithmetic

« Adding an integer to a pointer is different from adding
two integers
=« The value of the integer is always multiplied by the size of
the
type that the pointer points at
« Example:
« type _a *ptr=..;;
« type _a *ptr2 = ptr + a;

= IS really computing
= ptr2 = ptr + (a * sizeof(type_a));
= €. lea (ptr, a, sizeof(type_a)), ptr2 37

Carnegie Mellon

C: Pointer Arithmetic

sint *ptr = (int*)0x152130;
int *ptr2 = ptr + 1;

= char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1;

= char *ptr = (char*)0x152130;
vold *ptr2 = ptr + 1;

= char *ptr = (char*)0x152130;
char *p2 = ((char*) (((int*)ptr)+1));

38

-~ Carnegie Mellon _
C: Pointer Arithmetic

= Int *ptr = (1nt*)0x152130;
int *ptr2 = ptr + 1; //ptr21s 0x152134

= char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1; //ptr21s 0x152131

= char *ptr = (char*)0x152130;
void *ptr2 = ptr + 1; //ptr2isstill 0x152131

= char *ptr = (char*)0x152130;
char *p2 = ((char*) (((int*)ptr)+1));//p21s0x152134

39

Carnegie Mellon

Dynamic Memory Allocation: Example

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

p4 = malloc(4)

p5 = malloc(4)

40

The Memory-Block Information Data Structure

=« Requirements:

= tells us where the blocks are, how big they are, and whether they
are free

=« must be able to update the data during calls to malloc and free

= heed to be able to find the next free block which is a “good enough
fit" for a given payload
= heed to be able to quickly mark a block as free or allocated
= need to be able to detect when we run out of blocks
= what do we do in that case?

= The only memory we have is what we're handing out

= ...but not all of it needs to be payload! We can use part of it to
store the block information. 41

Finding a Free Block

= First Fit

= search from beginning, use first block that's big enough
= linear time in total number of blocks
= can cause small “splinters” at beginning of list

= Next Fit

« start search from where previous search finished

« Often faster than first fit, but some research suggests worse
fragmentation

= Best Fit

= search entire list, use smallest block that's big enough

= keeps fragments small (less wasted memory), but slower than %st
fit

Freeing Blocks

« Simplest implementation is just clearing the “allocated”
flag
= but leads to external fragmentation

refof 4 4 4 8
free(p) p
4 4 4 4 8
malloc(8) Oops!

43

Insertion Policy

=« Where do you put a newly-freed block in the free list?

« LIFO (last-in-first-out) policy
= add to the beginning of the free list
= pro: simple and constant time (very fast)
block->next = freelist; freelist = block;
= con: studies suggest fragmentation is worse

= Address-ordered policy
sinsert blocks so that free list blocks are always sorted by address
addr(prev) < addr(curr) < addr(next)

= pro: lower fragmentation than LIFO
= CON: requires search

44

C: Pointer Casting

= Notation: (b*) a “casts” a to be of type b*
« Casting a pointer doesn't change the bits!
= Lype a *ptr a=...; type b *ptr b=(type b*)ptr a;
makes ptr_a and ptr_b contain identical bits
= But it does change the behavior when dereferencing
= because we interpret the bits differently
= Can cast type a* tolong/unsigned long and back

= pointers are really just 64-bit numbers

= such casts are important for malloclab
= but be careful — this can easily lead to hard-to-find errors

45

Carnegie Mellon

Cycle Checking: Hare and Tortoise Algorithm

= This algorithm detects cycles in i

linked lists . =D

« Set two pointers, called “hare” F_ — ‘H —
and “tortoise”, to the beginning of ~T <= =D
the list H

= During each iteration, move =y _q
“hare” forward by two nodes, “tortoise” by ~T
one node L s L.

= if “tortoise” reaches the end S T *)
of the list, there is no cycle 46

= If “tortoise” equals “hare”, the list has a cycle

Carnegie Mellon

Debugging Tip: Using the Preprocessor

=« Use conditional compilation with #if or #ifdef to easily
turn debugging code on or off

#ifdef DEBUG

#define DBG_PRINTF(...) fprintf (stderr, = VA ARGS)
##define CHECKHEAP (verbose) mm checkheap (verbose)

#felse

// comment line below to disable debug code!

#define DBG_PRINTF(...) #define DEBUG

##define CHECKHEAP (verbose)

. " *
#endif /* DEBUG */ void free (void *p) {

DBG_PRINTF (“freeing %p\n”, p);
CHECKHEAP (1) ;

47

Carnegie Mellon

Debugging Tip: Using the Preprocessor (contd)

#define DEBUG void free (void *p) {
fprintf (stderr, “freeing %p\n”, p):;
void free(void *p) { mm checkheap (1) ;
DBG_ PRINTF (“freeing %p\n”, p); e ___K\\\\\
CHECKHEAP (1) ; }
} preprocessor magic > Replaced with debug code!

void free(void *p) {

void free (void *p) { }

DBG PRINTF (“freeing %p\n”, p); ___K\\\\\
CHECKHEAP (1) ;

preprocessor magic > Debug code gone!

48

Carnegie Mellon

] | 16 byte |
Header Reduction | |
footerless

e Note: this is completely optional and generally hdt | 1
discouraged due to its relative difficulty
o Do NOT attempt unless you are satisfied with

your implementation as-is payload
hd1 | 1

e \When to use 8 or 4 byte header? (must support

all possible block sizes) free |
e If 4 byte, how to ensure that payload is aligned? ol
e Arrange accordingly
e How to coalesce if 4 byte header block is followed

by 8 byte header block?
e Store extra information in headers fr1 | o hd2 | 1

49

