
Carnegie Mellon

Malloc Bootcamp

Minji, Pallavi, Gauri

October 27, 2019

Carnegie Mellon

Agenda

▪ Conceptual Overview
▪ Explicit List
▪ Segregated list
▪ Splitting, coalescing
▪ Hints on hints

▪ Advanced debugging with GDB
▪ Fun GDB tricks

▪ Writing a good heap checker
▪ Appendix

Carnegie Mellon

Conceptual Outline

Carnegie Mellon

4

Dynamic Memory Allocation
■ Used when

■ we don't know at compile-time how much memory we will need
■ when a particular chunk of memory is not needed for the entire run

■ lets us reuse that memory for storing other things
■ Important terms:

■ malloc/calloc/realloc/free
■ mem_sbrk
■ payload
■ fragmentation (external vs internal)
■ Splitting / coalescing

Carnegie Mellon

mm_init
▪ Why prologue footer and

epilogue header?

▪ Payload must be 16-byte
aligned

▪ But, the size of payload doesn’t
have to be a multiple of 16 - just
the block does!

▪ Things malloc’d must be within
the prologue and epilogue

Prologue footer
n + 8

Epilogue header

n

Prologue footer
Size = chunk size

rounded up
0

prev

Size = chunk size
rounded up

0

Epilogue header

n

n + 8

n + 16

5

Carnegie Mellon

6

If We Can't Find a Usable Free Block
■ Assume an implicit list implementation
■ Need to extend the heap

■ mem_sbrk()
■ sbrk(num_bytes) allocates space and

returns pointer to start
■ sbrk(0) returns a pointer to the end of

the current heap
■ For speed, extend the heap by a

little more than you need
immediately

■ use what you need out of the new
space, add the rest as a free block

■ What are some tradeoffs you can

program code
initialized data

uninitialized data

heap

stack

current brk
pointer

0

Carnegie Mellon

7

Tracking Blocks: Explicit
List▪ Maintain a list of free blocks instead of all blocks

▪ means we need to store forward/backward pointers, not just sizes
▪ we only track free blocks, so we can store the pointers in the payload area!
▪ need to store size at end of block too, for coalescing

allocated block free block
size 1

payload and
padding

size 1

size 0
next
prev

unused

size 0

Carnegie Mellon

Splitting a Block
■ If the block we find is larger

than we need, split it and leave
the remainder for a future
allocation

■ explicit lists: correct previous and
next pointers

■ Segregated lists: same as
explicit

■ When would we not split a
block?

m 1

payload

m 1

n-m 0
next
prev

n-m 0

8

n 0
next
prev

n 0

Carnegie Mellon

Coalescing Memory
■ Combine adjacent blocks if both are free

■ explicit lists: look forward and backward in the heap, using block
sizes, not next/prev

Allocated

Allocated

■ Four cases:

block to

be freed

Allocated

Free

Free

Allocated

Free

Free
9

Carnegie Mellon

Coalescing Memory
m1 0
next
prev

m1 0

n 1

n 1

m2 0
next
prev

m2 0
10

m1 0
next
prev

m1 0

n 1

n 1

m2 1

payload

m2 1

n+m1 0
next
prev

n+m1 0

m2 1

payload

m2 1

n+m1+m2 0
next
prev

n+m1+m2 0

Carnegie Mellon

11

Design Considerations
■ Finding a matching free block

■ First fit vs. next fit vs. best fit vs. “good enough” fit
■ continue searching for a closer fit after finding a big-enough free

block?
■ Free block ordering

■ LIFO, FIFO, or address-ordered?
■ When to coalesce

■ while freeing a block or while searching for free memory?
■ How much memory to request with sbrk()

■ larger requests save time in system calls but increase maximum
memory use

Carnegie Mellon

12

Hints on hints
For the final, you must greatly increase the utilization and keep a high
throughput.

● Reducing external fragmentation requires achieving something closer
to best-fit allocated
○ Using a better fit algorithm
○ Combine with a better data structure that lets you run more

complex algorithms

● Reducing internal fragmentation requires reducing data structure
overhead and using a ‘good’ free block

Carnegie Mellon

13

Segregated Lists
• Multiple explicit lists where the free blocks are of a certain size range

• Increases throughput and raises probability of choosing a better-sized
block

• Need to decide what size classes (only 128 bytes of stack space)
○ Diminishing returns
○ What do you do if you can’t find something in the current size class?

• RootSizeClass1 -> free-block 1 -> free-block 2 -> free-block 3 ->
• RootSizeClass2 -> free-block 1 -> free-block 2 -> free-block 3 -> ...
• RootSizeClass3 -> free-block 1 -> free-block 2 -> free-block 3 -> ...
• ...

Carnegie Mellon

14

Modularity and Design
● Now you need to have more than one list

○ List operations are the same for all lists
■ Insert
■ Remove

○ Deciding which size class a block should go into
■ 14 if statements :(
■ A small const array of sizes + a loop :)

● It would be quite painful to maintain copy-pasted code
○ Abstractions are nice - it’s what CS is all about!

Carnegie Mellon

15

Modularity and Design
● Make sure you have modular, extensible code

○ It will save you a lot of time spent debugging and style points
○ It will make you happy when you come back to your code

■ In 6 days when you start the final submission
■ Or in 6 hours if you’re missing sleep - please get some rest!

○ It will make it easier to explain to students when you become a TA later :)
● Labs in this course are NOT meant to be done in one sitting
● Labs in this course are NOT meant to be done in 2-3 nights
● Plan ahead, leave plenty of time for design

○ Measure twice, cut once
● Take a break between sittings

○ Your brain can keep working subconsciously
○ Leave time for “aha!” moments

Carnegie Mellon

Coalescing Memory
■ Combine adjacent blocks if both are free

■ segregated lists: look forward and back using block sizes, then
■ Use the size of the coalesced block to determine the proper list

● What else might you need to do to maintain your seglists?
■ Insert into list using the insertion policy (LIFO, address-ordered, etc.)

Allocated

Allocated

■ Four cases:

block to

be freed

Allocated

Free

Free

Allocated

Free

Free
16

Carnegie Mellon

17

Eliminate footers in allocated blocks
● Reduces internal fragmentation (increase

utilization)
● Why do we need footers?

○ Coalescing blocks
○ What kind of blocks do we coalesce?

● Do we need to know the size of a block if we’re not
going to coalesce it?

● Based on that idea, can you design a method that
helps you determine when to coalesce?
○ Hint: where could you store a little bit of extra

information for each block?

m1 0
next
prev

m1 0

m2 1

payload

m3 1

payload

free
blocks
still have
footers

allocated
blocks
don’t
have
footers!

Carnegie Mellon

Coalescing Memory
■ Combine adjacent blocks if both are free

■ footerless: if free, obtain info from footer then use next/prev

Allocated

Allocated

■ Four cases:

block to

be freed

Allocated

Free

Free

Allocated

Free

Free
18

Carnegie Mellon

19

Decrease the minimum block size
● Reduces internal fragmentation (increase

utilization)
● Currently, min block size is 32.

○ 8 byte header
○ 16 byte payload (or 2 8 byte pointers for free)
○ 8 byte footer

● If you just need to malloc(5), and the payload size
is 16 bytes, you waste 11 bytes.

● Must manage free blocks that are too small to hold
the pointers for a doubly linked free list

9 bytes are wasted!
How can we prevent this?

Carnegie Mellon

Debugging: GDB & The Almighty Heap Checker

Carnegie Mellon

21

What’s better than printf? Using GDB
● Use GDB to determine where segfaults happen!
● gdb mdriver will open the malloc driver in gdb

○ Type run and your program will run until it hits the segfault!
● step/next - (abbrev. s/n) step to the next line of code

○ next steps over function calls
● finish - continue execution until end of current function, then break
● print <expr> - (abbrev. p) Prints any C-like expression (including

results of function calls!)
○ Consider writing a heap printing function to use in GDB!

● x <expr> - Evaluate <expr> to obtain address, then examine memory
at that address
○ x /a <expr> - formats as address
○ See help p and help x for information about more formats

Carnegie Mellon

22

Using GDB - Fun with frames
■ backtrace - (abbrev. bt) print call stack up until current function

■ backtrace full - (abbrev. bt full) print local variables in each frame

(gdb) backtrace
#0 find_fit
(...)
#1 mm_malloc (...)
#2 0x0000000000403352 in
eval_mm_valid (...) #3 run_tests (...)
#4 0x0000000000403c39 in main (...)

■ frame 1 - (abbrev. f 1) switch to mm_malloc’s stack frame
■ Good for inspecting local variables of calling functions

Carnegie Mellon

23

Using GDB - Setting breakpoints/watchpoints
■ break mm_checkheap - (abbrev. b) break on “mm_checkheap()”

■ b mm.c:25 - break on line 25 of file “mm.c” - very useful!
■ b find_fit if size == 24 - break on function “find_fit()” if the local

variable “size” is equal to 24 - “conditional breakpoint”

■ watch heap_listp - (abbrev. w) break if value of “heap_listp” changes -
“watchpoint”

■ w block == 0x80000010 - break if “block” is equal to this value
■ w *0x15213 - watch for changes at memory location 0x15213

■ Can be very slow

■ rwatch <thing> - stop on reading a memory location
■ awatch <thing> - stop on any memory access

Carnegie Mellon

24

Heap Checker
■ int mm_checkheap(int verbose);
■ critical for debugging

■ write this function early!
■ update it when you change your implementation
■ check all heap invariants, make sure you haven't lost track of any part

of your heap
■ check should pass if and only if the heap is truly well-formed

■ should only generate output if a problem is found, to avoid cluttering up
your program's output

■ meant to be correct, not efficient
■ call before/after major operations when the heap should

be well-formed

Carnegie Mellon

25

Heap Invariants (Non-Exhaustive)
■ Block level

■ What are some things which should always be true of every block in
the heap?

Carnegie Mellon

26

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ What are some things which should always be true of every

element of a free list?

Carnegie Mellon

27

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size

class
■ Heap level

■ What are some things that should be true of the heap as a whole?

Carnegie Mellon

29

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size

class
■ Heap level

■ all blocks between heap boundaries, correct sentinel blocks (if
used)

Carnegie Mellon

29

How to Ask for Help
● Be specific about what the problem is, and how to cause it

○ BAD: “My program segfaults.”
○ GOOD: “I ran mdriver in gdb and it says that a segfault occurred due to

an invalid next pointer, so I set a watchpoint on the segfaulting next
pointer. How can I figure out what happened?”

○ GOOD: “My heap checker indicates that my segregated list has a block
of the wrong size in it after performing a coalesce(). Why might that be
the case?”

○ What sequence of events do you expect around the time of the error?
What part of the sequence has already happened?

● Have you written your mm_checkheap function, and is it working?
○ We WILL ask to see it!

● Use a rubber duck!

Carnegie Mellon

30

If You Get Stuck

■Please read the writeup!
■ CS:APP Chapter 9
■ View lecture notes and course FAQ

at http://www.cs.cmu.edu/~213
■ Office hours Sunday through Friday 5:30-9:30pm in GHC

5207
■ Post a private question on Piazza
■ Obtain a rubber duck at

https://tinyurl.com/malloc-f18

Carnegie Mellon

31

APPENDIX

Carnegie Mellon

32

Anonymous Structs/Unions

● What is the type of x? int
● How do we access x or my_a? my_a.x
● What is the type of my_b? struct B

struct B
● How do we access y of my_a? my_a.my_b.y

my_a.y

struct A {
int x;
struct B {

int y;
float z;

} my_b;
} my_a;

struct A {
int x;
struct B {

int y;
float z;

};
} my_a;

struct
name

member
name

Same idea with unions.
For the difference
between unions and
structs, refer to the C
bootcamp slides.

Carnegie Mellon

33

Zero-Length Arrays

● It’s a GCC extension - not part of the C specification!
● Must be at the end of a struct / union
● It simply allows us to represent variable-length structures
● sizeof on a zero-length array returns zero

struct line {
int length;
char contents[0];

};

int main() {
struct line my_line;
printf(“sizeof(contents) = %zu\n”, sizeof(L.contents)); // 0
printf(“sizeof(struct line) = %zu\n”, sizeof(struct line)); // 4

}

Carnegie Mellon

34

Internal Fragmentation
■ Occurs when the payload is smaller than the block size

■ due to alignment requirements
■ due to management overhead
■ as the result of a decision to use a larger-than-necessary block

■ Depends on the current allocations, i.e. the pattern of previous
requests

Carnegie Mellon

35

Internal Fragmentation
■ Due to alignment requirements – the allocator doesn't know

how you'll be using the memory, so it has to use the strictest
alignment:

■ void *m1 = malloc(13); void *m2 = malloc(11);
■ m1 and m2 both have to be aligned on 8-byte boundaries

■ Due to management overhead (each cell is 2 bytes):l e n 1 p a y l o a d 1 l e n 2 p a y l o a d 2

Carnegie Mellon

36

External Fragmentation
■ Occurs when the total free space is sufficient, but no single

free block is large enough to satisfy the request
■ Depends on the pattern of future requests

■ thus difficult to predict, and any measurement is at best an estimate
■ Less critical to malloc traces than internal fragmentation

p5 = malloc(4)

free(p1)

p6 = malloc(5) Oops! Seven bytes available, but not in one chunk....

Carnegie Mellon

37

C: Pointer Arithmetic
■ Adding an integer to a pointer is different from adding

two integers
■ The value of the integer is always multiplied by the size of

the
type that the pointer points at

■ Example:
■ type_a *ptr = ...;
■ type_a *ptr2 = ptr + a;

■ is really computing
■ ptr2 = ptr + (a * sizeof(type_a));
■ i.e. lea (ptr, a, sizeof(type_a)), ptr2

Pointer arithmetic on void* is undefined (what's the size of a void?)

Carnegie Mellon

38

C: Pointer Arithmetic
■int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1;

■ char *ptr
char *ptr2

=
=

(char*)0x152130;
ptr + 1;

■ char *ptr = (char*)0x152130;

void *ptr2 = ptr + 1;

■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1));

Carnegie Mellon

39

C: Pointer Arithmetic
■ int *ptr = (int*)0x152130;

int *ptr2 = ptr + 1; // ptr2 is 0x152134
■ char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1; // ptr2 is 0x152131
■ char *ptr = (char*)0x152130;

void *ptr2 = ptr + 1; // ptr2 is still 0x152131

■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1));// p2 is 0x152134

Carnegie Mellon

40

Dynamic Memory Allocation: Example

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

p4 = malloc(4)

p5 = malloc(4)

Carnegie Mellon

41

The Memory-Block Information Data Structure
■ Requirements:

■ tells us where the blocks are, how big they are, and whether they
are free

■ must be able to update the data during calls to malloc and free
■ need to be able to find the next free block which is a “good enough

fit” for a given payload
■ need to be able to quickly mark a block as free or allocated
■ need to be able to detect when we run out of blocks

■ what do we do in that case?
■ The only memory we have is what we're handing out

■ ...but not all of it needs to be payload! We can use part of it to
store the block information.

Carnegie Mellon

42

Finding a Free Block
■ First Fit

■ search from beginning, use first block that's big enough
■ linear time in total number of blocks
■ can cause small “splinters” at beginning of list

■ Next Fit
■ start search from where previous search finished
■ often faster than first fit, but some research suggests worse

fragmentation
■ Best Fit

■ search entire list, use smallest block that's big enough
■ keeps fragments small (less wasted memory), but slower than first

fit

Carnegie Mellon

Freeing Blocks

4 4 4 4 8

4 4 4 4 8

■ Simplest implementation is just clearing the “allocated”
flag

■ but leads to external fragmentation

root

pfree(p)

malloc(8) Oops!
43

Carnegie Mellon

44

Insertion Policy
■ Where do you put a newly-freed block in the free list?

■ LIFO (last-in-first-out) policy
■ add to the beginning of the free list
■ pro: simple and constant time (very fast)
block->next = freelist; freelist = block;
■ con: studies suggest fragmentation is worse

■ Address-ordered policy
■insert blocks so that free list blocks are always sorted by address
addr(prev) < addr(curr) < addr(next)
■ pro: lower fragmentation than LIFO
■ con: requires search

Carnegie Mellon

45

C: Pointer Casting
■ Notation: (b*)a “casts” a to be of type b*
■ Casting a pointer doesn't change the bits!

■ type_a *ptr_a=...; type_b *ptr_b=(type_b*)ptr_a;

makes ptr_a and ptr_b contain identical bits
■ But it does change the behavior when dereferencing

■ because we interpret the bits differently
■ Can cast type_a* to long/unsigned long and back

■ pointers are really just 64-bit numbers
■ such casts are important for malloclab
■ but be careful – this can easily lead to hard-to-find errors

Carnegie Mellon

46

Cycle Checking: Hare and Tortoise Algorithm
■ This algorithm detects cycles in

linked lists
■ Set two pointers, called “hare”

and “tortoise”, to the beginning of
the list

■ During each iteration, move
“hare” forward by two nodes, “tortoise” by
one node

■ if “tortoise” reaches the end
of the list, there is no cycle

■ if “tortoise” equals “hare”, the list has a cycle

H

T
H

H

H

T

T

T

Carnegie Mellon

47

Debugging Tip: Using the Preprocessor
■ Use conditional compilation with #if or #ifdef to easily

turn debugging code on or off
#ifdef DEBUG
#define DBG_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#define CHECKHEAP(verbose) mm_checkheap(verbose)
#else
#define DBG_PRINTF(...)
#define CHECKHEAP(verbose)
#endif /* DEBUG */

// comment line below to disable debug code!
#define DEBUG

void free(void *p) {
DBG_PRINTF(“freeing %p\n”, p);
CHECKHEAP(1);
...

}

Carnegie Mellon

48

Debugging Tip: Using the Preprocessor (contd)
#define DEBUG

void free(void *p) {
DBG_PRINTF(“freeing %p\n”, p);
CHECKHEAP(1);
...

}

// #define DEBUG

void free(void *p) {
DBG_PRINTF(“freeing %p\n”, p);
CHECKHEAP(1);
...

}

void free(void *p) {
fprintf(stderr, “freeing %p\n”, p);
mm_checkheap(1);
...

}

void free(void *p) {
...

}

𝓹𝓻𝓮𝓹𝓻𝓸𝓬𝓮𝓼𝓼𝓸𝓻 𝓶𝓪𝓰𝓲𝓬

𝓹𝓻𝓮𝓹𝓻𝓸𝓬𝓮𝓼𝓼𝓸𝓻 𝓶𝓪𝓰𝓲𝓬

Replaced with debug code!

Debug code gone!

Carnegie Mellon

Header Reduction
● Note: this is completely optional and generally

discouraged due to its relative difficulty
○ Do NOT attempt unless you are satisfied with

your implementation as-is

● When to use 8 or 4 byte header? (must support
all possible block sizes)

● If 4 byte, how to ensure that payload is aligned?
● Arrange accordingly
● How to coalesce if 4 byte header block is followed

by 8 byte header block?
● Store extra information in headers

footerless

hd1 1

payload

hd1 1

free

hd1 0

ftr1 0 hd2 1

49

16 byte

