
Introduction Exam review Virtual Memory

15-213 Recitation 09
VM

Ben Blum (bblum@andrew.cmu.edu)

November 2, 2009



Introduction Exam review Virtual Memory

Outline

Outline
I Announcements / Questions
I Exam review - common misconceptions
I Virtual Memory

I Theory
I Single-level address translation
I Multi-level address translation



Introduction Exam review Virtual Memory

Announcements

Public Service Announcements
I Exam grades back

I Drop deadline is today - talk to your advisor
I Malloclab checkpoint thursday

I It’s possible to “pass” but still be in trouble.
I Tshlab inkings back this week



Introduction Exam review Virtual Memory

Announcements

Any questions (malloclab, perhaps)?



Introduction Exam review Virtual Memory

Stack discipline

Returning from functions
I Return address: where you go when you are done

I On the stack (at %ebp+4)
I Return value: the value that the caller sees you returning

I In a register (namely, %eax )



Introduction Exam review Virtual Memory

Stack discipline

Stack frames - saving %ebp
I %ebp is a callee-save register.
I After entering function

I save %ebp on stack
I assign new %ebp
I allocate stack frame

I Before returning from function
I deallocate stack frame
I pop old %ebp from stack



Introduction Exam review Virtual Memory

Shell job control

Foreground vs background jobs
I The kernel doesn’t care about “foreground” or “background”

I abstraction provided by the shell
I Foreground jobs:

I Shell waits - sigsuspend or waitpid
I Wait on a process, not a process group!

I Has control of the terminal (tcsetpgrp)



Introduction Exam review Virtual Memory

Theory

Why use VM?
I Process’s private address space
I Can’t see other processes’ memory



Introduction Exam review Virtual Memory

Theory

How?
I Implemented in hardware
I When a memory access occurs:

I CPU talks to MMU (memory management unit)
I MMU does address translation
I Virtual address converted to physical address

I mov 0xdeadbeef,%eax actually a different physical address



Introduction Exam review Virtual Memory

Single-level address translation

VM specifics:
I Page size 4KB (212 bytes)
I Address length: 32 bits

I 12 bits for page offset
I 32− 12 = 20 addressing bits

I One-level page table
I Located at 0x01000000 (arbitrary)
I 4-byte PTEs

I 4KB aligned, so lowest 12 bits always zero
I Lowest 3 bits used for permission flags:
I bit 0: mapping is present
I bit 1: page is writable
I bit 2: page accessible by user

I How big overall?
I 220 indices, so 4MB



Introduction Exam review Virtual Memory

Single-level address translation

Simple example
I Virtual address 0xdeadbeef

I Physical Page Offset: 0xeef
I Page Table Index: 0xdeadb (1101 1110 1010 1101 1011)

I Page Table Entry
I Location: base + (size * index)

I 11 0111 1010 1011 0110 1100 = 0x37ab6c
I Final: 0x0137ab6c

I Entry contents: 0x98765007 (arbitrary)
I Final physical address: 0x98765eef



Introduction Exam review Virtual Memory

Single-level address translation

Simple example
I Virtual address 0xdeadbeef

I Physical Page Offset: 0xeef
I Page Table Index: 0xdeadb (1101 1110 1010 1101 1011)

I Page Table Entry
I Location: base + (size * index)

I 11 0111 1010 1011 0110 1100 = 0x37ab6c
I Final: 0x0137ab6c

I Entry contents: 0x98765007 (arbitrary)
I Final physical address: 0x98765eef



Introduction Exam review Virtual Memory

Multi-level address translation

VM specifics:
I Page size 4KB (212 bytes)
I Address length: 32 bits

I 12 bits for page offset
I 32− 12 = 20 addressing bits

I Two-level page directory+table
I Directory located at 0x00010000 (arbitrary)
I 4-byte PDEs, PTEs

I 4KB aligned, so lowest 12 bits always zero
I Permission bits for pagetables same as before
I Page directory entries only use the “present” bit

I How big overall?
I 210 indices (why?), so 4KB

I Protip: This is what x86 looks like



Introduction Exam review Virtual Memory

Multi-level address translation

Advanced example
I Virtual address 0xdeadbeef

I Physical Page Offset: 0xeef
I Addressing bits: 0xdeadb (1101 1110 1010 1101 1011)

I 1st index: 11 0111 1010
I 2nd index: 10 1101 1011

I Page directory entry
I Location: base + (size * index)

I 1101 1110 1000 = 0xde8
I Final: 0x00010de8

I Entry contents: 0x00011001 (arbitrary)



Introduction Exam review Virtual Memory

Multi-level address translation

Advanced example
I Virtual address 0xdeadbeef

I Physical Page Offset: 0xeef
I Addressing bits: 0xdeadb (1101 1110 1010 1101 1011)

I 1st index: 11 0111 1010
I 2nd index: 10 1101 1011

I Page directory entry
I Location: base + (size * index)

I 1101 1110 1000 = 0xde8
I Final: 0x00010de8

I Entry contents: 0x00011001 (arbitrary)



Introduction Exam review Virtual Memory

Multi-level address translation

Advanced example
I Virtual address 0xdeadbeef

I Physical Page Offset: 0xeef
I Addressing bits: 0xdeadb (1101 1110 1010 1101 1011)

I 1st index: 11 0111 1010
I 2nd index: 10 1101 1011

I Page table base = 0x00011000
I Page table entry

I Location: base + (size * index)
I 1011 0110 1100 = 0xb6c
I Final: 0x00011b6c

I Entry contents: 0x98765007 (arbitrary)
I Final physical address: 0x98765eef



Introduction Exam review Virtual Memory

Multi-level address translation

Advanced example
I Virtual address 0xdeadbeef

I Physical Page Offset: 0xeef
I Addressing bits: 0xdeadb (1101 1110 1010 1101 1011)

I 1st index: 11 0111 1010
I 2nd index: 10 1101 1011

I Page table base = 0x00011000
I Page table entry

I Location: base + (size * index)
I 1011 0110 1100 = 0xb6c
I Final: 0x00011b6c

I Entry contents: 0x98765007 (arbitrary)
I Final physical address: 0x98765eef



Introduction Exam review Virtual Memory

fin

Questions?


	Introduction
	Outline
	Announcements

	Exam review
	Stack discipline
	Shell job control

	Virtual Memory
	Theory
	Single-level address translation
	Multi-level address translation
	fin


