Andrew login ID:
Full Name:

Recitation Section:

CS 15-213, Fall 2009

Exam 1
Thurs, September 24, 2009

Instructions:

e Make sure that your exam is not missing any sheets, then write your full name, Andrew login ID, and
recitation section (A-J) on the front.

e Write your answers in the space provided for the problem. If you make a mess, clearly indicate your
final answer.

e The exam has a maximum score of 76 points.

e The problems are of varying difficulty. The point value of each problem is indicated (instructors
reserve the right to change these values). Pile up the easy points quickly and then come back to the
harder problems.

e This exam is OPEN BOOK. You may use any books or notes you like. No calculators or other
electronic devices are allowed.

e QUESTIONS: If you have a question, write it (clearly) on an index card and raise your hand. We will
take the card and write a reply.

e Good luck!

Page 1 of 18

1(10):

2 (8):

3(12):

4 (11):

5 (8):

6 (12):

79):

8 (6):

Extra (4):

TOTAL (76):

Page 2 of 18

Problem 1. (10 points):

Part A

Fill in the blanks in the table below with the number described in the first column of each row. You can
give your answers as unexpanded simple arithmetic expressions (such as 15213 4 42); you should not have
trouble fitting your answers into the space provided.

Remember that 32-bit floats have 8 bits of exponent and 23 bits of mantissa.

Description Number

int x=-1; float *f = (float =«)&x; Whatis the value of x£?

int x=0; float xf = (float =) é&x; Whatis the value of x£?

Smallest negative, non-zero denormalized 32-bit f1loat

Part B

Assume we are running code on an IA32 machine, which has a 32-bit word size and uses two’s complement
arithmetic for signed integers. Consider the following definition:

int x = foo();
unsigned int ux = x;
int v = bar();

Fill in the empty boxes in the table below. For each of the C expressions in the first column, either:

e State that it is true of all argument values, or

e Give an example where it is not true.

Puzzle True / Counterexample
x Ty " ('x) ~y=y " x " (y) - x
(x >> 31) ~ ((-x) >> 31) == 0
x 7 T(x > 31) <0
(((MlTux)) << 31) >> 31) == (((!!'x) << 31) >> 31)

Page 3 of 18

Problem 2. (8 points):

struct {
char a[9];
short b[3];
float c;
char =xd;
char e;
short f£f;
int gy
int h;

} foo;

A. Show how the struct above would appear on a 64-bit (“x86_64"") Windows machine (primitives of size
k are k-byte aligned). Label the bytes that belong to the various fields with their names and clearly
mark the end of the struct. Use hatch marks or x’s to indicate bytes that are allocated in the struct but
are not used.

Fo—t ottt ——f————————+

e e e
e e e s S

e S e L it S S

e e e O I e
e e L S A s

e L St S A B
e e
e St L A

B. Rearrange the above fields in foo to conserve the most space in the memory below. Label the bytes
that belong to the various fields with their names and clearly mark the end of the struct. Use hatch
marks or x’s to indicate bytes that are allocated in the struct but are not used.

s T I et St L e
e e R e R A
T R e s m B e

do—t ottt ————+

fo—t ottt ————+
Fo—t ottt ——————+
e e e e e L L

Fo—tm ottt ————————+

Page 4 of 18

C. How many bytes are wasted in part A, inside and after the struct, if the next memory value is a pointer?

D. How many bytes are wasted in part B, inside and after the struct, if the next memory value is a pointer?

Page 5 of 18

Problem 3. (12 points):

Consider the following two 8-bit floating point representations based on the IEEE floating point format.
Neither has a sign bit—they can only represent nonnegative numbers.

1. Format A

e There are k = 4 exponent bits. The exponent bias is 7.

e There are n = 4 fraction bits.
2. Format B

e There are k = 6 exponent bits. The exponent bias is 31.

e There are n = 2 fraction bits.

Fill in the blanks in the table below by converting the given values in each format to the closest possible value
in the other format. Express values as whole numbers (e.g., 17) or as fractions (e.g., 17/64). If necessary,
you should apply the round-to-even rounding rule. If conversion would cause an overflow, follow the IEEE
standard convention for representing +Infinity. You should also assume IEEE conventions for representing
denormalized values.

Format A Format B
Bits Value Bits Value
0111 0000 1 011111 00 1
224
27
64
111101 10
0000 0011

Page 6 of 18

Problem 4. (11 points):

Your friend Harry Bovik, who hasn’t taken 15-213, is in need of your help. He was writing a function to
do strange arithmetic for a project of his, but accidentally deleted his source code file, and also spilled his
drink across the sheet of paper with his scratch work on it, leaving him with only half-legible code and
an executable file that he compiled just recently. Being the clever student that you are, you ask to see his
scratchwork and executable file.

int foo(a)
{
b = 5;
switch () o
case O0:
b = ’
7
case 1:
b = ;
case 2:
b = ’
case 3:
b = ’
case 4:
b = ’

}

return b;

Page 7 of 18

Feeding the executable to your trusty debugger, you find the following relevant information:

$S0x5, $edx

0x1 (%rdi), %eax
S0x4, $eax
0x40052c <foo+36>
%$eax, $eax
*0x4006d0 (, $rax, 8)
$edi, $Sedx

Sedx

Fedx

Sedx

0x40052c <foo+36>
$edi, $Sedx

%$edi, $edx

%$edx, $eax

0x0000000000400522
0x0000000000400528
0x3b031b01000a6425

(gdb) disassemble foo

Dump of assembler code for function foo:
0x0000000000400508 <foo+0>: mov
0x000000000040050d <foo+5>: lea
0x0000000000400510 <foo+8>: cmp
0x0000000000400513 <foot+ll>: ja
0x0000000000400515 <foo+13>: mov
0x0000000000400517 <foo+l5>: Jmpqg
0x000000000040051e <foot+22>: mov
0x0000000000400520 <foot24>: shr
0x0000000000400522 <foot+26>: not
0x0000000000400524 <foo+28>: neg
0x0000000000400526 <foo+30>: Jjmp
0x0000000000400528 <foo+32>: mov
0x000000000040052a <foot+34>: XOor
0x000000000040052¢c <foo+36>: mov
0x000000000040052e <foot+38>: retqg
End of assembler dump.

(gdb) x/8g 0x4006d0

0x4006d0: 0x000000000040051e
0x4006e0: 0x0000000000400524
0x4006f£0: 0x000000000040052a
0x400700: 0x0000000400000028

0x00000044fffffelc

#

$rdi:

first argument

1. Unfortunately Harry’s scratch work has break statements hastily scribbled in and crossed out again
in every case, and he can’t remember which cases are supposed to have them. Using the assembly
dump of his function, figure out which cases had breaks at the end of them. (Write either “break”
or nothing at all in the last blank of each case block.)

2. The scratch work you were handed also failed to note what types a and b are, but fortunately some of

the opcodes give it away. Figure out what types Harry meant for his variables to be.

3. Using the disassembly of foo and the jump table you found, reconstruct the rest of the switch state-

ment.

4. What values will foo return for each possible input a?

Page 8 of 18

Problem 5. (8 points):

Consider the following data structure declarations:

struct node {
unsigned uid;
union data d;
struct node x*next;

}i

union data {
int x[3];
long yI[3];
}i

Below are given four C functions and five x86_64 code blocks, compiled on Linux using GCC.

int odin (struct node xptr) { :
return (ptr—>d.x[2]); A mowv OXZO(/ordl),/oraX
} add $0x8, %rax

unsigned dva (struct node xptr) {

’B ‘mov Oxc(%rdi),%rax‘
return (ptr->uid = (long)ptr—>next);

| C|[mov 0x10(%rdi), %eax |

long tri(struct node xptr) {
union data xdptr =
(union data =)ptr->next;

return dptr->y[1]; D | mov 0x20(%rdi), %rax
} mov %eax, (%rdi)
long *chetyre (struct node *ptr) { E | mov 0x20(%rdi), %rax

return &ptr->next->d.y[0];
}

mov 0x8 (%rax), $rax

In the following table, next to the name of each C function, write the name of the x86_64 block that imple-
ments it.

Function Name | Code Block

odin

dva

tri

chetyre

Page 9 of 18

Problem 6. (12 points):

Below is some assembly code to a famous algorithm. Study the code then answer the questions about the
code on the following page.

4004f0 <mystery>:

4004f0: 83 ee 01 sub S0x1, $esi

4004£3: 85 f6 test %$esi, %Sesi

4004£f5: Te 2f jle 400526 <mystery+0x36>
4004£f7: 48 89 f£8 mov $rdi, $rax

4004 fa: 45 31 c9 XOr %$r9d, $r9d

4004fd: 45 31 c0 XOor %$r8d, $r8d

400500: 8b 08 mowv (%$rax), %secx

400502 8b 50 04 mov 0x4 (%$rax), sedx
400505 39 dl cmp %edx, $ecx

400507: 7e 0b jle 400514 <mystery+0x24>
4005009: 89 10 mov %edx, (%rax)

40050b: 89 48 04 mowv %$ecx, 0x4 (%rax)
40050e: 41 b9 01 00 00 00 mov $0x1,%rod

400514: 41 83 c0 01 add $0x1, %$r8d

400518: 48 83 c0 04 add $0x4, $rax

40051c: 41 39 f£0 cmp %esi, $r8d

40051f: 75 df jne 400500 <mystery+0x10>
400521 : 45 85 c9 test %$r9d, $r9d

400524: 75 ca jne 4004£f0 <mystery>
400526 c3 retqg

400527: 90 nop

Page 10 of 18

We'll start with some basic questions about assembly commands, just to test your translation skills:

a)mov (%rax), $ecx Write a single line of C code that shows what this does. (Use C variables named
rax and ecx, you can ignore types)

b) mov 0x4 (%rax), %$edx Write a single line of C code that shows what this does. (Use C variables
named rax and edx, you can ignore types)

¢) There are 3 primary instructions that can modify %eip, name them. (We want the main version of the
function, for example, if the instruction foo modifies %eip, we don’t want foo, fool, fooq, foob):

d) We have learned about two computer architectures: IA32 and x86_64. Which architecture is this code
written for, and what downsides would compiling in the other architecture bring?

Page 11 of 18

e) Now for the fun part: Please fill in the blanks in the following C code to correspond to the assembly code

on the previous page:

void mystery(__ x array, int
int a;
int 1i;
int end= len - ;
int temp;
do{
a = 0;
for (i=0;1i< end ;i++) {

if(

len) {

) {

/* you should

write the body of the if statement below =/

twhile (

f) What famous algorithm is this?

Page 12 of 18

Problem 7. (9 points):

Circle the correct answer. Assume IA32 unless stated otherwise.

1. Here is a small C program:
struct foo { int bar; int baz; };
int get_baz (struct foo xfoo_ptr)

{

return foo_ptr->baz;

After compiling the code, disassembling get_baz, and adding a few comments, we get:

get_baz: push %ebp ; save old frame base pointer
mowv %esp, $ebp ; set frame base pointer
mov 0x8 (%ebp) ,%eax ; move foo_ptr to %eax
—Mystery Instruction Goes Here—
leave
ret

What is the Mystery Instruction?

(a) mov S$baz (%eax), $eax
(b) lea 0x4 (%eax), %eax
(c) mov 0xc (%ebp), $eax

(d) mov 0x4 (%eax), $eax

2. The function bit sy is declared in C as
int bitsy(int x);
and the (correctly) compiled IA32 code is:

bitsy: push %ebp

mov %esp, sebp

sub $0x8, $esp

mov 0x8 (%ebp) , $eax
not $eax

inc %eax

leave

ret

Page 13 of 18

What is the result (denoted here by a C expression) returned by bitsy?

(@ ! (x + 1)

(b) (1 - x)

(c) (x >0 ? -x : -x + 1)
(d) -x

3. Which of the following is true:

(a) There are many IEEE float representations exactly equal to zero.
(b) There are two IEEE float representations exactly equal to zero.
(c) There is one IEEE float representation exactly equal to zero.

(d) There are no IEEE float representations exactly equal to zero.
4. Which one of the following is true:

(a) Denormalized floats signal a computation error or an undefined result.
(b) Denormalized floats represent magnitudes greater than those of normalized floats.
(c) Denormalized floats must be normalized before a floating point computation is complete.

(d) Denormalized floats represent magnitudes smaller than those of normalized floats.
5. Why does the compiler sometimes generate xorl %eax, $eax rather thanmovl $0x0, $eax?

(a) The xorl form is faster and/or uses fewer bytes than mov1.

(b) Using xorl allows the binary code to run on both IA32 and x86-64 architectures.

(¢) The mov1 form requires a zero to be accessed from memory location 0.

(d) The xorl form stalls the processor until the the result value is stored in %eax and ready for use
by the next instruction.

6. On x86-64, addl %ebx, $eax has the following effect:

(a) %eax gets %eax + %ebx, %rax is unchanged
(b) %eax gets %eax + %ebx, high-order 32 bits of %rax are sign-extended
(c) %eax gets %eax + %ebx, high-order 32 bits of %rax are zeroed

(d) %rax gets %eax + %ebx

Page 14 of 18

7. If %esp has the value OxBFFF0000 before a call instruction, the value immediately after the call
instruction (before the first instruction of the called function) is:
(a) OxBFFF0004
(b) 0xBFFF0000
(c) The address of the instruction after the call instruction.

(d) OxBFFEFFFC
8. Which of the following is true:

(a) A function can always ignore the initial values of all “caller save” registers.
(b) A function can immediately clear any “callee save” registers.
(c) The caller must always save all “caller save” registers before calling a function.

(d) The called function must immediately save em all “callee save” registers on the stack and restore
them before returning.

9. Which of the following is true:

(a) No decimal integer has an exact representation in IEEE floating point (10 is not a power of 2).
(b) There is no exact representation in IEEE floating point of most decimal fractions.
(c) A 32-bit IEEE float can represent any 32-bit integer to within 0.5.

(d) All 32-bit IEEE floats with integer values are encoded with the binary point at the rightmost bit,
so E (the exponent) is 0 and exp (the 8-bit exponent field) is E + bias = 127.

Page 15 of 18

Problem 8. (6 points):

Consider the C code below, where H and J are constants declared with #define.

int
int

arrayl[H][J];
array2[J] [H];
int copy_array (int x,
array2[y] [x]

return 1;

int y) |
arrayl[x]I[yl;

Suppose the above C code generates the following x86-64 assembly code:

On entry

$edi = x

%esi =y

#

copy_array:
movslg %esi,%rsi
movslg %edi, $rdi
movq %$rsi, %rax
salqg $5, %Srax ; arith shift left
subg %$rsi, %rax
addg %$rdi, S%rax
leag (%$rdi, %$rdi, 2), $%rdi
leaqg (%rsi, %rdi, 4), %rdi
movl arrayl(,%rdi,4), %edx
movl %edx, array2(,%rax,4)
movl $1, %eax
ret

‘What are the values of H and J?

Page 16 of 18

Extra Credit (4 points)

This problem is Extra Credit; do not attempt it until you have finished all other questions on the exam.
This question is based on knowledge this class does not cover, and you are not expected to know how
to solve it.

This problem deals with a tricky problem with GCC when run with high levels of optimization. This code
in particular is compiled with

$ gcc -03 input.c

One of your friends who hasn’t taken 213 comes to you with a program, wanting your help. They tell you
that they have been debugging it for hours, finally removing all their intricate code and just putting a single
printf statement inside their loop. They show you this relevant code:

short a = 1024;
short b;

for (b=1000; ;b++) {
if (a+b < 0) {
printf ("Overflow!, stopping\n");
break;
}
printf ("%d ",atb);

Their code never breaks and runs in an infinite loop. You, being a 213 student of course immediately ask to
see the assembly dump:

Page 17 of 18

08048380 <main>:

8048380: 8d 4c 24 04 lea 0x4 (%esp) , $ecx
8048384: 83 ed f0 and SOxfffffff0, $esp
8048387: f£ff 71 fc pushl Oxfffffffc (%ecx)
804838a: 55 push %ebp

804838b: 89 e5 mov %esp, $ebp

804838d: 53 push %ebx

804838e: bb €8 07 00 00 mov S0x7e8, $ebx
8048393: 51 push %ecx

8048394: 83 ec 10 sub $0x10, $esp

8048397: 89 5c 24 04 mov %ebx, 0x4 (%esp)
804839b: 83 c3 01 add $0x1, $ebx

804839%9e: ¢7 04 24 70 84 04 08 movl $0x8048470, (%esp)
80483a5: e8 2e ff ff ff call 80482d8 <printf@plt>
80483aa: eb eb Jmp 8048397 <main+0x17>
80483ac: 90 nop

80483ad: 90 nop

80483ae: 90 nop

80483af: 90 nop

1. From the programmer’s point of view, what is wrong with this assembly code?

2. Why do you think gcc did this? (hint: we never mentioned this in class)

3. Please write the assembly code necessary to achieve the behavior intended by the programmer, and
tell us where you would insert the code.

Page 18 of 18

