
Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, fall 2009

24th Lecture, Dec 1

Instructors:

Roger B. Dannenberg and Greg Ganger



Carnegie Mellon

Today

� Multi-core

� Thread Level Parallelism (TLP)

� Simultaneous Multi -Threading (SMT)

� Parallel Programming Paradigms

� OpenMP� OpenMP

� Functional Programming

� Thread pools, message passing, pipeline processing

� SIMD, Vectors, and CUDA

2



Carnegie Mellon

3



Carnegie Mellon

4



Carnegie Mellon

5



Carnegie Mellon

6



Carnegie Mellon

Interaction With the Operating System

� OS perceives each core as a separate 

processor

� OS scheduler maps threads/processes to 

different cores

Most major OS support multi-core today:� Most major OS support multi-core today:

Windows, Linux, Mac OS X, …

7



Carnegie Mellon

8



Carnegie Mellon

9



Carnegie Mellon

10



Carnegie Mellon

11



Carnegie Mellon

12



Carnegie Mellon

13



Carnegie Mellon

14



Carnegie Mellon

15



Carnegie Mellon

16



Carnegie Mellon

17



Carnegie Mellon

Today

� Multi-core

� Thread Level Parallelism (TLP)

� Simultaneous Multi -Threading (SMT)

� Parallel Programming Paradigms

� OpenMP� OpenMP

� Functional Programming

� Thread pools, message passing, pipeline processing

� SIMD, Vectors, and CUDA

18



Carnegie Mellon

OpenMP

� Goal: ease development of multi-threaded applications

� Implicit (sort-of) creation, synchronization, deletion of 

threads

� Platform independent

� Uses compiler pragmas, directives, function calls, Uses compiler pragmas, directives, function calls, 

environment variables

19



Carnegie Mellon

The OpenMP Execution Model

Master Thread

Worker Threads

Synchronization

Sequential

Parallel

Sequential

� Fork and Join Model

Worker Threads

Synchronization

Sequential

Parallel

20



Carnegie Mellon

OpenMP Example

#pragma omp parallel for
for (i=0; i < numPixels; i++)
{

pGrayScaleBitmap[i] = (unsigned BYTE)
(pRGBBitmap[i].red * 0.299 +
pRGBBitmap[i].green * 0.587 +

� OpenMP divides work among threads

� Each thread performs a subset of the thread iterations

� Restrictions apply: no break or goto, update to i, etc.

pRGBBitmap[i].green * 0.587 +
pRGBBitmap[i].blue * 0.114);

}

21



Carnegie Mellon

OpenMP Data Dependencies

� Each iteration depends upon data from the previous one

#pragma omp parallel for
for (i=2; i < 10; i++) {

factorial[i] = i * factorial[i-1];
}

� Each iteration depends upon data from the previous one

� Example of a race condition

� OpenMP does not detect data dependencies and race 

conditions

22



Carnegie Mellon

OpenMP Reduction

sum = 0;
#pragma omp parallel for reduction(+:sum)
for (i=0; i < 100; i++) {

sum += array[i];
}

� OpenMP creates a sum variable for each thread

� Initialized sum variables to zero

� No race conditions or synchronization to update sums

� When threads exit, OpenMP adds the local sums to form 

the correct value of the global variable sum

23



Carnegie Mellon

OpenMP Critical Sections

� All threads execute the critical section, but only one at a 

time

� Used to access/update shared variables

#pragma critical (name)
{ Critical Section }

� Used to access/update shared variables

24



Carnegie Mellon

OpenMP Limitations

� Assumes shared memory

� Does not scale up to large numbers of processors

� C, C++, and Fortran

� But not more modern languages

25



Carnegie Mellon

Functional Programming

� Fundamental idea: compute by composing functions

� “Function” is mapping from input to output

� Always get the same output when given the same input

� No state, so no race conditions

Imperative Programming Functional Programming

i is modified, a is modified each variable gets one value

� f(g(x), h(y)) 

� Note that g(x) and h(y) can run in parallel

Imperative Programming

for (i = 0; i < n; i++) {
a[i] = 5 * a[i];

}

Functional Programming

b = array(1, n)
[(i, a!i) | i <- [1..n]]

26



Carnegie Mellon

Strict and Non-strict

� producer = f() : producer()

� Here, a:b means construct a list with a at the head and b at the tail

� consumer(x : rest) = g(x); consumer(rest)

� consumer(producer())

Imperative programming: run producer first (does it � Imperative programming: run producer first (does it 

complete?) and pass result to consumer

� Called “strict” data structure

� Functional programming with non-strict data:

� Consumer can start on head of list while producer is computing the 

rest of the list

� Possible because structure is immutable

� Implicit synchronization through data dependencies

27



Carnegie Mellon

Functional Programming Summary

� Positive Features

� Stateless programming eliminates race conditions

� Values can be used as soon as they are computed, implicit 

synchronization based on availability of values

� Non-strict list structures offer an clean model related to producer-

consumer, stream processing, and message passingconsumer, stream processing, and message passing

� Negative Features

� Possibly too much parallelism: every function call potentially forks 

to compute each parameter

� Non-strict lists can use infinite memory if eagerly evaluated

� Not always a natural fit to “real” problems, e.g. how does a 

functional program produce output without side effects?

� Overall, very promising, essential and useful concepts, 

but might not be the whole story
28



Carnegie Mellon

Thread Pools, Message Passing, 

Pipelined Processing
� Basic Concept: 

� Express work as large set of independent tasks

� Allocate enough threads to utilize all available cores

� Assign a task to a thread whenever one becomes free

Thread PoolThread Pool

29



Carnegie Mellon

Small But Not Too Small

� Tasks should be small 

� Breaking up tasks into many small units allows more parallelism

� Long-running task could lead to sequential execution when there 

are no other tasks to run

� Tasks should not be too small

� Overhead to run a task includes:� Overhead to run a task includes:

� Creation of the task description

� Queuing task description for execution

� Dequeue task by another thread

� Possibly communicate results back to initial thread

� Task size should be worth the overhead

� If equal to overhead, no gain

� Should be order of magnitude larger

30



Carnegie Mellon

How Many Threads in the Pool?

� As many threads as tasks?

� Too many threads use extra memory

� Contention for cache memory

� Context switching

� One thread per hardware core?

� Better, but not all threads are always ready to run� Better, but not all threads are always ready to run

� Enough threads to have a running thread per core

� Production thread pools can introduce new threads when tasks 

block and cores go idle

� Reduce (or block) threads when there are more runable threads 

than cores

31



Carnegie Mellon

Futures

� What if a task computes a result?

� Task is specified by a function that returns type V:

� V myTask()

� Future<V> is a template type returned when you queue a 

task for execution by a thread pool

� V Future<V>::get()

� To use the return value, call its get() method

� If value is computed (function returned), get() returns the value

� If function has not returned, get() blocks

32



Carnegie Mellon

Examples

� OS X: “Grand Central Dispatch”

� Java: newFixedThreadPool(int nThreads)

� .NET: TPL = Task Parallel Library

� Almost all practical libraries and languages use thread � Almost all practical libraries and languages use thread 

pools at some level of implementation to efficiently 

assign tasks to cores and execute them

33



Carnegie Mellon

SIMD, Vectors, and CUDA

� SIMD: single instruction, multiple data

� We saw examples in the IA32 and x86-64 SSE instructions

� Instead of 

� for (i = 0; i < n; i++) a[i] = b[i] + c[i]

� WriteWrite

� a = b + c

� Especially useful for numeric programming

� Problems crop up when there are conditionals, or 

data is not completely homogenious

� Example: pixel processing in computer graphics

� A small program runs for each pixel

� Problem: execute a small bit of code for each element of a vector

34



Carnegie Mellon

CUDA

� nVidia’s parallel programming model

� Maps to TESLA architecture and multi-core computers

� Considers 100’s of cores, 1000’s of threads

� Model:

� An array of threads executes a single kernel

� Each thread has an id to form thread-specific memory addresses

� Threads are organized into groups called blocks

� Blocks share memory and can synchronize but

� No sharing/synchronizing between blocks

� Scalability is central

� Basic unit is 8-core multiprocessor with shared memory

� Each chip has many multiprocessors, e.g. 16 to 30

� Run N kernel instances at a time until entire thread array executed
35



Carnegie Mellon

nVidia TESLA Architecture

36



Carnegie Mellon

Execution Model

� Host initializes global memory

� Host “launches” a kernel (a block of code)

� Each thread runs the kernel

� If there are 240 thread processors, run threads 0-239, then run 

threads 240-479, then threads 480-719, etc.

� Thread launching is assisted by hardware – very fast� Thread launching is assisted by hardware – very fast

� Kernel can access global memory

� Host retrieves results from global memory,

and/or moves new data to global memory

� Host can then launch another kernel

37



Carnegie Mellon

CUDA Memory

� Per-Thread Memory using thread processor registers 

(fast) and off-chip memory (large, not cached)

� Per-Block Memory using multiprocessor shared memory 

(small but fast)

� Per-Device Memory

� Large

� Not cached

� Persists across kernel launches

� Kernel is basically a C function with some extra 

annotations to specify type of memory for each variable

38



Carnegie Mellon

CUDA Summary

� Interesting combination of hardware and software

� Hardware has limited memory to maximize threads per chip

� Fast kernel launching in hardware eliminates software thread pool

� Software limited to map very directly to hardware

� 10x to 100x speedup of many scientific applications

Lower power, smaller space� Lower power, smaller space

� Requires careful programming taking architecture into 

account

39



Carnegie Mellon

Summary

� Instruction-level parallelism
� Hitting limits due to transistor density and heat dissipation

� Thread-level parallelism
� Alternative path to faster computation – if we can write software

� Simultaneous Multithreading (SMT)

� OpenMP: fork/join style parallelism� OpenMP: fork/join style parallelism

� Functional Programming
� Key ideas: variables do not change value, no races, 

implicit synchronization via data dependencies

� Thread Pools
� Key ideas: avoid thread creation overhead; break program into 

small tasks, thread pool maps tasks to threads; futures

� SIMD, CUDA
� Key ideas: same code operates on every array element, CUDA is 

“Single Kernel, Multiple Instances (SKMI)”
40



Carnegie Mellon

References

� Ruud van der Pas, Sun Microsystems. 

http://openmp.org/mp-documents/ntu-vanderpas.pdf

� http://software.intel.com/en-us/articles/getting-started-with-openmp/

� Hinsen, K. “The Promises of Functional Programming,” Computing in Science 

& Engineering, 11(4), July-Aug. 2009

� Rishiyur S. Nikhil and Arvind. “Implicit Parallel Programming: Declarative 

Programming Languages” Programming Languages” 

http://www.embedded.com/design/multicore/201804960

� http://www.ddj.com/go-parallel/article/showArticle.jhtml?articleID=216500409

� http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Trai

ning_NVISION08.pdf

41


