Carnegie Méellon

Introduction to Computer Systems

15-213/18-243, fall 2009
24t Lecture, Dec 1

Instructors:
Roger B. Dannenberg and Greg Ganger

Carnegie Méellon

Today

Multi-core
Thread Level Parallelism (TLP)
Simultaneous Multi -Threading (SMT)

Parallel Programming Paradigms
" OpenMP
" Functional Programming

= Thread pools, message passing, pipeline processing
= SIMD, Vectors, and CUDA

Carnegie Méellon

Single-core computer

CPU chip
reqister fila

sydtam bus memory bus
L~

1L P
CE

P ¥
h interf & T G - h‘a main
us intertace “a_ L hridge | . bf memaory

AN
s :I_D_I:_h
'-'-'-\. .__'_'_-\.
o IO b -
J L J I_ us J L Expansion slots for
v S o aothar davices such
Use graphics dizk as network adapters.
controller adapter controller
I 1 | i
mouse keyboard monitor e
| ““54 15-213, 06

S —

Single-core CPU chip

the single core

CPU chip
register file /
—A
j | ALU
—— system bus

bus interface

1>
—

Carnegie Méellon

Multi-core architectures

 This lecture i1s about a new trend In
computer architecture:

Replicate multiple processor cores on a

single die.
Core 1 Core 2 Core 3 Core 4
reqistar fils register file reqistar file register file
S h, Y h,
L, ; L, L
fl’ ALU E ALU fl’ ALY j:T ALU
e T sl Bl p -l |"'\._
bus interface . :>
N am—

Multi-core CPU chip 5

Carnegie Méellon

Within each core, threads are time-sliced
(Just like on a uniprocessor)

several several several several
threads threads threads threads
C C C C
0 o] 0 0
r r r r
e e e e

Carnegie Méellon

Interaction With the Operating System

m OS perceives each core as a separate
processor

m OS scheduler maps threads/processes to
different cores

m Most major OS support multi-core today:
Windows, Linux, Mac OS X, ...

Carnegie Méllon

Why multi-core ?

 Difficult to make single-core
clock frequencies even higher

» Deeply pipelined circuits:
— heat problems
— speed of light problems
— difficult design and verification
— large design teams necessary
— server farms need expensive

air-conditioning
 Many new applications are multithreaded

* General trend in computer architecture (shift
towards more parallelism)

Carnegie Méellon

Instruction-level parallelism

 Parallelism at the machine-instruction level

* The processor can re-order, pipeline
instructions, split them into
microinstructions, do aggressive branch
prediction, etc.

 |nstruction-level parallelism enabled rapid
iIncreases in processor speeds over the

last 15 years

Carnegie Méellon

Thread-level parallelism (TLP)

* This Is parallelism on a more coarser scale

« Server can serve each client in a separate
thread (\Web server, database server)

« A computer game can do Al, graphics, and
physics in three separate threads

» Single-core superscalar processors cannot
fully exploit TLP

« Multi-core architectures are the next step in
processor evolution: explicitly exploiting TLP

10

Carnegie Méellon

A technigue complementary to multi-core:
Simultaneous multithreading

» Problem addressed: L1 D-Cache D-TLB

The processor pipeline WF}M

can get stalled:

— Waiting for the result
of a long floating point
(or integer) operation

— Waiting for data to
arrive from memory

Schedulers

Uop queues

Rename/Alloc

1

L2 Cache and Control

BTB o Trace Cache uCode

ROM
Other execution units - Decoder |
wait unused @ _'_|BTB and I-TLB

Source: Intel

11

Carnegie Méellon

Simultaneous multithreading (SMT)

« Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

* Weaving together multiple “threads”
on the same core

« Example: If one thread Is waiting for a floating
point operation to complete, another thread can
use the integer units

12

Carnegie Méellon

Without SMT, only a single thread
can run at any given time

Flogting Point
] [uCode ROM]

Thread 1: floating point

Carnegie Méellon

SMT processor: both threads can
run concurrently

Integ Flogting Point

Thread 2: Thread 1: floating point
integer operation 14

Carnegie Méellon

But: Can’t simultaneously use the
same functional unit

Integer

This scenario is
impossible with SMT
on a single core

Thread 1 Thread 2 | (@Ssuming a single
IMPOSSIBLE integer unit) "

Carnegie Méellon

SMT Dual-core: all four threads can
run concurrently

Intager || Floajhg Point Floatipig Point

Thread 1 Thread 3 Thread 2 Thread4

Carnegie Méellon

Comparison: multi-core vs SMT

* Multi-core:

— Since there are several cores,
each Is smaller and not as powerful
(but also easier to design and manufacture)

— However, great with thread-level parallelism

« SMT

— Can have one large and fast superscalar core
— Great performance on a single thread

— Mostly still only exploits instruction-level
parallelism

17

Carnegie Méellon

Today

Parallel Programming Paradigms
" OpenMP
" Functional Programming
= Thread pools, message passing, pipeline processing
= SIMD, Vectors, and CUDA

18

Carnegie Méellon

OpenMP

m Goal: ease development of multi-threaded applications

m Implicit (sort-of) creation, synchronization, deletion of
threads

m Platform independent

m Uses compiler pragmas, directives, function calls,
environment variables

19

Carnegie Méellon

The OpenMP Execution Model

Sequential lMaster Thread

Parallel l l l lWorkerThreads
\ 4

Sequential

\ 4
l l l l lWorkerThreads
Parallel

m Fork and Join Model

20

Carnegie Méellon

OpenMP Example

#pragma onp parallel for
for (1=0; I < nunPi xels; 1 ++)
{
pGrayScal eBitmap[i] = (unsigned BYTE)
(pPRGBBitmap[i].red * 0.299 +
PRGBBI tmap[i1].green * 0.587 +
PRGBBI tmap[i1].blue * 0.114);

}

m OpenMP divides work among threads
m Each thread performs a subset of the thread iterations
m Restrictions apply: no break or goto, update to i, etc.

Carnegie Méellon

OpenMP Data Dependencies

#pragma onp parallel for

for (1=2; 1 < 10; 1++) {
factorial[i] =1 * factorial[i1-1];

}

m Each iteration depends upon data from the previous one
m Example of a race condition

m OpenMP does not detect data dependencies and race
conditions

22

Carnegie Méellon

OpenMP Reduction

sum = 0;
#pragma onp parallel for reduction(+:sum
for (1=0; 1 < 100; 1++) {

sum += array[1];

OpenMP creates a sum variable for each thread
Initialized sum variables to zero
No race conditions or synchronization to update sums

When threads exit, OpenMP adds the local sums to form
the correct value of the global variable sum

Carnegie Méellon

OpenMP Critical Sections

#pragma critical (nane)
{ Critical Section }

m All threads execute the critical section, but only one at a
time

m Used to access/update shared variables

24

Carnegie Méellon

OpenMP Limitations

m Assumes shared memory

= Does not scale up to large numbers of processors

m C, C++, and Fortran

" But not more modern languages

25

Functional Programming

m Fundamental idea: compute by composing functions
m “Function” is mapping from input to output

= Always get the same output when given the same input

= No state, so no race conditions

Imperative Programming Functional Programming

for (i

=0; I <n; i++) { b = array(l, n)
a[i] =

5 * a[i]; [(i, ali) | | <- [1..n]]
}

i is modified, a is modified each variable gets one value

m f(g(x), h(y))
= Note that g(x) and h(y) can run in parallel

26

Carnegie Méellon

Strict and Non-strict

m producer = f() : producer()

" Here, a:b means construct a list with a at the head and b at the tail
m consumer(x : rest) = g(x); consumer(rest)
m consumer(producer())

m Imperative programming: run producer first (does it
complete?) and pass result to consumer

= Called “strict” data structure

m Functional programming with non-strict data:

= Consumer can start on head of list while producer is computing the
rest of the list

= Possible because structure is immutable
= |mplicit synchronization through data dependencies

27

Functional Programming Summary

m Positive Features
= Stateless programming eliminates race conditions

= Values can be used as soon as they are computed, implicit
synchronization based on availability of values

= Non-strict list structures offer an clean model related to producer-
consumer, stream processing, and message passing
m Negative Features

= Possibly too much parallelism: every function call potentially forks
to compute each parameter

= Non-strict lists can use infinite memory if eagerly evaluated
= Not always a natural fit to “real” problems, e.g. how does a
functional program produce output without side effects?
m Overall, very promising, essential and useful concepts,
but might not be the whole story

28

Thread Pools, Message Passing,
Pipelined Processing

m Basic Concept:

= Express work as large set of independent tasks

= Allocate enough threads to utilize all available cores

= Assign a task to a thread whenever one becomes free

/

4

Ty

00

~

Thread Pool

Jidd

Carnegie Méellon

29

Small But Not Too Small

m Tasks should be small
= Breaking up tasks into many small units allows more parallelism
" Long-running task could lead to sequential execution when there
are no other tasks to run
m Tasks should not be too smali
= Qverhead to run a task includes:
= Creation of the task description
= Queuing task description for execution
= Dequeue task by another thread
= Possibly communicate results back to initial thread
= Task size should be worth the overhead
= |f equal to overhead, no gain
= Should be order of magnitude larger

C

arnegie Mellon

30

Carnegie Méellon

How Many Threads in the Pool?

m As many threads as tasks?
" Too many threads use extra memory
= Contention for cache memory
= Context switching
m One thread per hardware core?
= Better, but not all threads are always ready to run

m Enough threads to have a running thread per core

" Production thread pools can introduce new threads when tasks

block and cores go idle
= Reduce (or block) threads when there are more runable threads

than cores

KY|

Carnegie Méellon

Futures

m What if a task computes a result?

m Task is specified by a function that returns type V:
=V myTask()

m Future<V> is a template type returned when you queue a
task for execution by a thread pool

m V Future<V>::get()
= To use the return value, call its get() method

= |f value is computed (function returned), get() returns the value
= |f function has not returned, get() blocks

32

Carnegie Méellon

Examples

m OS X: “Grand Central Dispatch”

m Java: newFixedThreadPool(int nThreads)
m .NET: TPL = Task Parallel Library

m Almost all practical libraries and languages use thread
pools at some level of implementation to efficiently
assign tasks to cores and execute them

33

Carnegie Méellon

SIMD, Vectors, and CUDA

m SIMD: single instruction, multiple data
m We saw examples in the IA32 and x86-64 SSE instructions
m Instead of
= for (i=0;i<n;i++) a[i] = bl[i] + c[i]
m Write
" a=b+c
m Especially useful for numeric programming

m Problems crop up when there are conditionals, or
data is not completely homogenious

m Example: pixel processing in computer graphics
= A small program runs for each pixel
= Problem: execute a small bit of code for each element of a vector

34

CUDA

m nVidia’s parallel programming model

m Maps to TESLA architecture and multi-core computers
" Considers 100’s of cores, 1000’s of threads

m Model:

= An array of threads executes a single kernel
= Each thread has an id to form thread-specific memory addresses
" Threads are organized into groups called blocks

= Blocks share memory and can synchronize but

= No sharing/synchronizing between blocks

m Scalability is central
= Basic unit is 8-core multiprocessor with shared memory
= Each chip has many multiprocessors, e.g. 16 to 30

= Run N kernel instances at a time until entire thread array executed
35

nVidia TESLA Architecture

® 240 thread processors execute kernel threads

® 30 multiprocessors, each contains
® 8 thread processors
® One unit
® Shared memory enables thread cooperation

Multiprocessor

Thread
Processors

008 WDk Caporadon l:] NviIDLA

Carnegie Méellon

Execution Model

m Host initializes global memory
m Host “launches” a kernel (a block of code)
m Each thread runs the kernel

= |f there are 240 thread processors, run threads 0-239, then run
threads 240-479, then threads 480-719, etc.

" Thread launching is assisted by hardware — very fast
= Kernel can access global memory

m Host retrieves results from global memory,
and/or moves new data to global memory

m Host can then launch another kernel

37

CUDA Memory

m Per-Thread Memory using thread processor registers
(fast) and off-chip memory (large, not cached)

m Per-Block Memory using multiprocessor shared memory
(small but fast)
m Per-Device Memory
" large
= Not cached
= Persists across kernel launches

m Kernel is basically a C function with some extra
annotations to specify type of memory for each variable

38

Carnegie Méellon

CUDA Summary

m Interesting combination of hardware and software
"= Hardware has limited memory to maximize threads per chip
= Fast kernel launching in hardware eliminates software thread pool
= Software limited to map very directly to hardware

m 10x to 100x speedup of many scientific applications
m Lower power, smaller space

m Requires careful programming taking architecture into
account

39

Carnegie Méellon

Summary

m Instruction-level parallelism
= Hitting limits due to transistor density and heat dissipation

m Thread-level parallelism
= Alternative path to faster computation — if we can write software

m Simultaneous Multithreading (SMT)
m OpenMP: fork/join style parallelism

m Functional Programming
= Key ideas: variables do not change value, no races,
implicit synchronization via data dependencies

m Thread Pools
= Key ideas: avoid thread creation overhead; break program into
small tasks, thread pool maps tasks to threads; futures

m SIMD, CUDA

= Key ideas: same code operates on every array element, CUDA is

“Single Kernel, Multiple Instances (SKMI)”
40

Carnegie Méellon

References

m Ruud van der Pas, Sun Microsystemes.
http://openmp.org/mp-documents/ntu-vanderpas.pdf

m http://software.intel.com/en-us/articles/getting-started-with-openmp/
m Hinsen, K. “The Promises of Functional Programming,” Computing in Science
& Engineering, 11(4), July-Aug. 2009

m Rishiyur S. Nikhil and Arvind. “Implicit Parallel Programming: Declarative
Programming Languages”
http://www.embedded.com/design/multicore/201804960

m http://www.ddj.com/go-parallel/article/showArticle.jhtml?articlelD=216500409

m http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Trai
ning_NVISIONOS.pdf

41

