
Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, fall 2009

22nd Lecture, Nov. 17

Instructors:

Roger B. Dannenberg and Greg Ganger

Carnegie Mellon

� Threads: review basics

� Synchronization

� Races, deadlocks, thread safety

Today

2

Carnegie Mellon

Process: Traditional View

� Process = process context + code, data, and stack

shared libraries

Program context:

Data registers

Condition codes

Code, data, and stack

stack
SP

Process context

shared libraries

run-time heap

0

read/write data

Condition codes

Stack pointer (SP)

Program counter (PC)

read-only code/dataPC

brk

Kernel context:

VM structures

Descriptor table

brk pointer

3

Carnegie Mellon

� Process = thread + code, data, and kernel context

Process: Alternative View

shared libraries

run-time heap

read/write data

Program context:

Data registers

Condition codes

Stack pointer (SP)

Code, data, and kernel context

brk

Thread

4

0

read/write dataStack pointer (SP)

Program counter (PC) read-only code/data

stack
SP

PC

Kernel context:

VM structures

Descriptor table

brk pointer

Carnegie Mellon

Process with Two Threads

shared libraries

run-time heap

read/write data

Program context:

Data registers

Condition codes

Stack pointer (SP)

Program counter (PC)

Code, data, and kernel context

read-only code/data
stack

PC

brk

Thread 1

5

0

read-only code/data
stack

SP PC

Kernel context:

VM structures

Descriptor table

brk pointer

Program context:

Data registers

Condition codes

Stack pointer (SP)

Program counter (PC)

stack
SP

Thread 2

Carnegie Mellon

� Threads and processes: similarities

� Each has its own logical control flow

� Each can run concurrently with others

� Each is context switched (scheduled) by the kernel

Threads and processes: differences

Threads vs. Processes

� Threads and processes: differences

� Threads share code and data, processes (typically) do not

� Threads are much less expensive than processes

� Process control (creating and reaping) is more expensive as

thread control

� Context switches for processes much more expensive than for

threads

6

Carnegie Mellon

Detaching Threads

� Thread-based servers:
Use “detached” threads to avoid memory leaks

� At any point in time, a thread is either joinable or detached

� Joinable thread can be reaped and killed by other threads

� must be reaped (with pthread_join) to free memory resources

� Detached thread cannot be reaped or killed by other threads

� resources are automatically reaped on termination� resources are automatically reaped on termination

� Default state is joinable

� use pthread_detach(pthread_self()) to make detached

� Must be careful to avoid unintended sharing

� For example, what happens if we pass the address of connfd to the
thread routine?

� Pthread_create(&tid, NULL, thread,
(void *)&connfd);

7

Carnegie Mellon

Pros and Cons of Thread-Based Designs

� + Easy to share data structures between threads

� e.g., logging information, file cache

� + Threads are more efficient than processes

� – Unintentional sharing can introduce subtle and hard-to-

reproduce errors!reproduce errors!

� The ease with which data can be shared is both the greatest strength

and the greatest weakness of threads

8

Carnegie Mellon

� Threads: basics

� Synchronization

� Races, deadlocks, thread safety

Today

9

Carnegie Mellon

Shared Variables in Threaded C Programs

� Question: Which variables in a threaded C program are

shared variables?

� The answer is not as simple as “global variables are shared” and

“stack variables are private”

� Requires answers to the following questions:� Requires answers to the following questions:

� What is the memory model for threads?

� How are variables mapped to each memory instance?

� How many threads might reference each of these instances?

10

Carnegie Mellon

� Conceptual model:

� Multiple threads run within the context of a single process

� Each thread has its own separate thread context

� Thread ID, stack, stack pointer, program counter, condition codes, and general

purpose registers

� All threads share the remaining process context

Threads Memory Model

� Code, data, heap, and shared library segments of the process virtual address

space

� Open files and installed handlers

� Operationally, this model is not strictly enforced:

� Register values are truly separate and protected, but

� Any thread can read and write the stack of any other thread

� Mismatch between the conceptual and operation model

is a source of confusion and errors
11

Carnegie Mellon

Thread Accessing Another Thread’s Stack

char **ptr; /* global */

int main()
{

int i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",

/* thread routine */
void *thread(void *vargp)
{

int myid = (int) vargp;
static int svar = 0;

printf("[%d]: %s (svar=%d)\n",
myid, ptr[myid], ++svar);"Hello from foo",

"Hello from bar"
};
ptr = msgs;

for (i = 0; i < 2; i++)
Pthread_create(&tid,

NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

myid, ptr[myid], ++svar);
}

Peer threads access main thread’s stack

indirectly through global ptr variable

12

Carnegie Mellon

Mapping Variables to Memory Instances

char **ptr; /* global */

int main()
{

int i;
pthread_t tid;

Global var: 1 instance (ptr [data])

Local vars: 1 instance (i m, msgs.m)

Local var: 2 instances (

myid p0 [peer thread 0’s stack],

myid p1 [peer thread 1’s stack]

)

pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};
ptr = msgs;

for (i = 0; i < 2; i++)
Pthread_create(&tid,

NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{

int myid = (int)vargp;
static int svar = 0;

printf("[%d]: %s (svar=%d)\n",
myid, ptr[myid], ++svar);

}

Local static var: 1 instance (svar [data])

13

Carnegie Mellon

� Which variables are shared?

Shared Variable Analysis

Variable Referenced by Referenced by Referenced by

instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
svar no yes yes
i m yes no no
msgsm yes yes yes

� Answer: A variable x is shared iff multiple threads

reference at least one instance of x. Thus:

� ptr , svar , and msgs are shared

� i and myid are not shared

14

msgsm yes yes yes
Myid p0 no yes no
Myid p1 no no yes

Carnegie Mellon

badcnt.c : Improper Synchronization

/* shared */
volatile unsigned int cnt = 0;
#define NITERS 100000000

int main() {
pthread_t tid1, tid2;
Pthread_create(&tid1, NULL,

count, NULL);
Pthread_create(&tid2, NULL,

/* thread routine */
void *count(void *arg) {

int i;
for (i=0; i<NITERS; i++)

cnt++;
return NULL;

}

linux> ./badcntPthread_create(&tid2, NULL,
count, NULL);

Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

if (cnt != (unsigned)NITERS*2)
printf("BOOM! cnt=%d\n",

cnt);
else

printf("OK cnt=%d\n",
cnt);

}

BOOM! cnt=198841183

linux> ./badcnt
BOOM! cnt=198261801

linux> ./badcnt
BOOM! cnt=198269672

cnt should be

equal to 200,000,000.

What went wrong?

15

Carnegie Mellon

Assembly Code for Counter Loop

.L9:
movl -4(%ebp),%eax
cmpl $99999999,%eax

Corresponding assembly code

for (i=0; i<NITERS; i++)
cnt++;

C code for counter loop in thread i

Head (H)

16

cmpl $99999999,%eax
jle .L12
jmp .L10

.L12:
movl cnt,%eax # Load
leal 1(%eax),%edx # Update
movl %edx,cnt # Store

.L11:
movl -4(%ebp),%eax
leal 1(%eax),%edx
movl %edx,-4(%ebp)
jmp .L9

.L10:

Head (Hi)

Tail (Ti)

Load cnt (Li)

Update cnt (Ui)

Store cnt (Si)

Carnegie Mellon

Concurrent Execution

� Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

� Ii denotes that thread i executes instruction I

� %eaxi is the content of %eax in thread i’s context

H1 - 0

i (thread) instri cnt%eax1

-

%eax2

Key:H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1

1

1

1

2

2

2

2

2

1

-

0

1

1

-

-

-

-

-

1

0

0

0

1

1

1

1

2

2

2 OK

-

-

-

-

-

1

2

2

2

-

Key:

L oad

U pdate

S tore

17

Carnegie Mellon

� Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2

Concurrent Execution (cont)

H1

L1

U1

1

1

1

-

0

1

0

0

0

i (thread) instri cnt%eax1

-

-

-

%eax2

Key:

L oad

U pdate

18

U1

H2

L2

S1

T1

U2

S2

T2

1

2

2

1

1

2

2

2

1

-

-

1

1

-

-

-

0

0

0

1

1

1

1

1

-

-

0

-

-

1

1

1 Oops!

U pdate

S tore

Carnegie Mellon

� How about this ordering?

Concurrent Execution (cont)

H1

L1

H2

L2

U2

1

1

2

2

2

i (thread) instri cnt%eax1 %eax2

� We can analyze the behaviour using a process graph

19

U2

S2

U1

S1

T1

T2

2

2

1

1

1

2

Carnegie Mellon

Progress Graphs

A progress graph depicts

the discrete execution

state space of concurrent

threads.

Each axis corresponds to

the sequential order of

instructions in a thread.

S2

T2

Thread 2

(L1, S2)

20

instructions in a thread.

Each point corresponds to

a possible execution state

(Inst1, Inst2).

E.g., (L1, S2) denotes state

where thread 1 has

completed L1 and thread

2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

Thread 1

Carnegie Mellon

Trajectories in Progress Graphs

A trajectory is a sequence

of legal state transitions

that describes one possible

concurrent execution of

the threads.

Example:S2

T2

Thread 2

21

H1, L1, U1, H2, L2,

S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

Thread 1

Carnegie Mellon

Critical Sections and Unsafe Regions

L, U, and S form a

critical section with

respect to the shared

variable cnt

Instructions in critical

sections (wrt to someS2

T2

Thread 2

critical

22

sections (wrt to some

shared variable) should

not be interleaved

Sets of states where such

interleaving occurs

form unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

Thread 1

critical section wrt cnt

critical

section

wrt

cnt

Unsafe region

Carnegie Mellon

Critical Sections and Unsafe Regions

S2

T2

Thread 2

critical

Definition: A trajectory is safe

iff it does not enter any unsafe

region

Claim: A trajectory is

safe

23

H1 L1 U1 S1 T1

H2

L2

U2

Thread 1

critical section wrt cnt

critical

section

wrt

cnt

Unsafe region

Claim: A trajectory is

correct (wrt cnt) iff it is

safe

unsafe

Carnegie Mellon

Semaphores

� Question: How can we guarantee a safe trajectory?

� We must synchronize the threads so that they never enter an unsafe
state.

� Classic solution: Dijkstra's P and V operations on semaphores

� Semaphore: non-negative global integer synchronization variable

� P(s): [while (s == 0) wait(); s -- ;]� P(s): [while (s == 0) wait(); s -- ;]

– Dutch for "Proberen" (test)

� V(s): [s++;]

– Dutch for "Verhogen" (increment)

� OS guarantees that operations between brackets [] are executed
indivisibly

� Only one P or V operation at a time can modify s.

� When while loop in P terminates, only that P can decrement s

� Semaphore invariant: (s >= 0) 24

Carnegie Mellon

badcnt.c : Improper Synchronization

/* shared */
volatile unsigned int cnt = 0;
#define NITERS 100000000

int main() {
pthread_t tid1, tid2;
Pthread_create(&tid1, NULL,

count, NULL);
Pthread_create(&tid2, NULL,

/* thread routine */
void *count(void *arg) {

int i;
for (i=0; i<NITERS; i++)

cnt++;
return NULL;

}

How to fix using semaphores?
Pthread_create(&tid2, NULL,

count, NULL);

Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

if (cnt != (unsigned)NITERS*2)
printf("BOOM! cnt=%d\n",

cnt);
else

printf("OK cnt=%d\n",
cnt);

}

How to fix using semaphores?

25

Carnegie Mellon

Safe Sharing with Semaphores
� One semaphore per shared variable

� Initially set to 1

� Here is how we would use P and V operations to synchronize

the threads that update cnt

/* Semaphore s is initially 1 */

/* Thread routine */
void *count(void *arg)
{

int i;

for (i=0; i<NITERS; i++) {
P(s);
cnt++;
V(s);

}
return NULL;

} 26

Carnegie Mellon

Safe Sharing With Semaphores

Provide mutually exclusive

access to shared variable by

surrounding critical section

with P and V operations on

semaphore s (initially set to 1)

Semaphore invariant

creates a forbidden region

Thread 2

V(s)

T2

S2
0 0

-1 -1 -1 -1
0 0

0 0

-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Forbidden region

Unsafe region

27

creates a forbidden region

that encloses unsafe region

and is entered by any

trajectory

H1 P(s) V(s) T1

Thread 1
L1 U1 S1

H2

P(s)

L2

U2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0
-1 -1 -1 -1

0 0

Initially

s = 1

Carnegie Mellon

Wrappers on POSIX Semaphores

/* Initialize semaphore sem to value */
/* pshared=0 if thread, pshared=1 if process */
void Sem_init(sem_t *sem, int pshared, unsigned int value) {

if (sem_init(sem, pshared, value) < 0)
unix_error("Sem_init");

}

/* P operation on semaphore sem */
void P(sem_t *sem) {

28

void P(sem_t *sem) {
if (sem_wait(sem))

unix_error("P");
}

/* V operation on semaphore sem */
void V(sem_t *sem) {

if (sem_post(sem))
unix_error("V");

}

Carnegie Mellon

Sharing With POSIX Semaphores

/* properly sync’d counter program */
#include "csapp.h"
#define NITERS 10000000

volatile unsigned int cnt;
sem_t sem; /* semaphore */

int main() {
pthread_t tid1, tid2;

/* thread routine */
void *count(void *arg)
{

int i;

for (i=0; i<NITERS; i++) {
P(&sem);
cnt++;
V(&sem);pthread_t tid1, tid2;

Sem_init(&sem, 0, 1); /* sem=1 */

/* create 2 threads and wait */
...

if (cnt != (unsigned)NITERS*2)
printf("BOOM! cnt=%d\n", cnt);

else
printf("OK cnt=%d\n", cnt);

exit(0);
}

V(&sem);
}
return NULL;

}

Warning:

It’s really slow!

29

Carnegie Mellon

� Threads: basics

� Synchronization

� Races, deadlocks, thread safety

Today

30

Carnegie Mellon

One worry: races

� A race occurs when correctness of the program depends on one

thread reaching point x before another thread reaches point y

/* a threaded program with a race */
int main() {

pthread_t tid[N];
int i;
for (i = 0; i < N; i ++)for (i = 0; i < N; i ++)

Pthread_create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);
exit(0);

}

/* thread routine */
void *thread(void *vargp) {

int myid = *((int *)vargp);
printf("Hello from thread %d\n", myid);
return NULL;

}

Where is

the race?

31

Carnegie Mellon

Race Elimination

� Make sure don’t have unintended sharing of state

/* a threaded program with a race */
int main() {

pthread_t tid[N];
int i;
for (i = 0; i < N; i++) {

int *valp = malloc(sizeof(int));
*valp = i;*valp = i;
Pthread_create(&tid[i], NULL, thread, valp);

for (i = 0; i < N; i++)
Pthread_join(tid[i], NULL);

exit(0);
}

/* thread routine */
void *thread(void *vargp) {

int myid = *((int *)vargp);
free(vargp);
printf("Hello from thread %d\n", myid);
return NULL;

} 32

Carnegie Mellon

Another worry: Deadlock

� Processes wait for condition that will never be true

� Typical Scenario

� Processes 1 and 2 needs two resources (A and B) to proceed

� Process 1 acquires A, waits for B

� Process 2 acquires B, waits for A� Process 2 acquires B, waits for A

� Both will wait forever!

33

Carnegie Mellon

Deadlocking With POSIX Semaphores
int main()
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d \ n", cnt);printf("cnt=%d \ n", cnt);
exit(0);

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);

34

Carnegie Mellon

Deadlock Visualized in Progress Graph

Locking introduces the

potential for deadlock:

waiting for a condition that

will never be true

Any trajectory that enters

the deadlock region will

eventually reach the

Thread 2

V(s1)

V(s0)
Forbidden region

for s0

deadlock

state

35

eventually reach the

deadlock state, waiting for

either s0 or s1 to become

nonzero

Other trajectories luck out and

skirt the deadlock region

Unfortunate fact: deadlock is

often non-deterministic

Thread 1
P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

Forbidden region

for s1

deadlock

region

s0=s1=1

Carnegie Mellon

Avoiding Deadlock
int main()
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d \ n", cnt);

Acquire shared resources in same order

printf("cnt=%d \ n", cnt);
exit(0);

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[0]); P(&mutex[1]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s0);

P(s1);

cnt++;

V(s1);

V(s0);

36

Carnegie Mellon

Avoided Deadlock in Progress Graph

Thread 2

V(s1)

V(s0)
Forbidden region

for s0

No way for trajectory to get

stuck

Processes acquire locks in

same order

Order in which locks released

37

Thread 1
P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

Forbidden region

for s1

s0=s1=1

Order in which locks released

immaterial

Carnegie Mellon

Crucial concept: Thread Safety

� Functions called from a thread (without external

synchronization) must be thread-safe

� Meaning: it must always produce correct results when called

repeatedly from multiple concurrent threads

Some examples of thread-unsafe functions:� Some examples of thread-unsafe functions:

� Failing to protect shared variables

� Relying on persistent state across invocations

� Returning a pointer to a static variable

� Calling thread-unsafe functions

38

Carnegie Mellon

Thread-Unsafe Functions (Class 1)

� Failing to protect shared variables

� Fix: Use P and V semaphore operations

� Example: goodcnt.c

� Issue: Synchronization operations will slow down code

� e.g., badcnt requires 0.5s, goodcnt requires 7.9s

39

Carnegie Mellon

Thread-Unsafe Functions (Class 2)

� Relying on persistent state across multiple function invocations

� Example: Random number generator (RNG) that relies on static state

/* rand: return pseudo-random integer on 0..32767 * /
static unsigned int next = 1;
int rand(void)
{

next = next*1103515245 + 12345; next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{

next = seed;
}

40

Carnegie Mellon

Making Thread-Safe RNG

� Pass state as part of argument

� and, thereby, eliminate static state

/* rand - return pseudo-random integer on 0..32767 * /

int rand_r(int *nextp)
{

*nextp = *nextp*1103515245 + 12345;

� Consequence: programmer using rand must maintain seed

*nextp = *nextp*1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

}

41

Carnegie Mellon

Thread-Unsafe Functions (Class 3)

� Returning a ptr to a

static variable

� Fixes:

� 1. Rewrite code so caller

passes pointer to struct hostp = Malloc(...);
gethostbyname_r(name, hostp);

struct hostent
*gethostbyname(char name)
{

static struct hostent h;
<contact DNS and fill in h>
return &h;

}

– Issue: Requires changes in

caller and callee

� 2. Lock-and-copy

– Issue: Requires only

simple changes in caller

(and none in callee)

– However, caller must free

memory

gethostbyname_r(name, hostp);

struct hostent
*gethostbyname_ts(char *name)
{

struct hostent *q = Malloc(...);
struct hostent *p;
P(&mutex); /* lock */
p = gethostbyname(name);
*q = *p; /* copy */
V(&mutex);
return q;

} 42

Carnegie Mellon

Thread-Unsafe Functions (Class 4)

� Calling thread-unsafe functions

� Calling one thread-unsafe function makes the entire function that calls it

thread-unsafe

� Fix: Modify the function so it calls only thread-safe functions ☺

43

Carnegie Mellon

� All functions in the Standard C Library (at the back of your

K&R text) are thread-safe

� Examples: malloc , free , printf , scanf

� Most Unix system calls are thread-safe, with a few

exceptions:

Thread-Safe Library Functions

44

Thread-unsafe function Class Reentrant version

asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r

Carnegie Mellon

� Threads provide another mechanism for writing

concurrent programs

� Threads are very popular

� Somewhat cheaper than processes

� Easy to share data between threads

� Make use of multiple cores for parallel algorithms

Threads Summary

� Make use of multiple cores for parallel algorithms

� However, the ease of sharing has a cost:

� Easy to introduce subtle synchronization errors

� Tread carefully with threads!

� For more info:

� D. Butenhof, “Programming with Posix Threads”, Addison-Wesley,

1997

45

