Carnegie Méellon

Introduction to Computer Systems

15-213/18-243, fall 2009
22" Lecture, Nov. 17

Instructors:
Roger B. Dannenberg and Greg Ganger

Carnegie Méellon

Today

m Threads: review basics
m Synchronization
m Races, deadlocks, thread safety

Carnegie Méellon

Process: Traditional View

m Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: Sp —» stack
Data registers
Condition codes shared libraries
Stack pointer (SP)
Program counter (PC) brk — run-time heap

Kernel context: read/write data

VM structures PC— read-only code/data

Descriptor table
brk pointer

Carnegie Méellon

Process: Alternative View

m Process = thread + code, data, and kernel context

Code, data, and kernel context

Thread
Program context: shared libraries

Data registers brk

Condition codes run-time heap

Stack pointer (SP) read/write data

Program counter (PC) PC—| read-only code/data

0
stack
7 Kernel context:

VM structures
Descriptor table
brk pointer

Carnegie Méellon

Process with Two Threads

Thread 1
Program context:
Data registers Code, data, and kernel context
Condition codes shared libraries
Stack pointer (SP) brk —
Program counter (PC) r ! run-time heap
read/write data
Sp —» stack PC— read-only code/data
0
Thread 2
Program context: Kernel context:
Data registers VM st.ructures
Condition codes Descriptor table
Stack pointer (SP) brk pointer

Program counter (PC)

stack

\ 4

SP

Carnegie Méellon

Threads vs. Processes

m Threads and processes: similarities
= Each has its own logical control flow
= Each can run concurrently with others
= Each is context switched (scheduled) by the kernel

m Threads and processes: differences
" Threads share code and data, processes (typically) do not
" Threads are much less expensive than processes
= Process control (creating and reaping) is more expensive as

thread control
= Context switches for processes much more expensive than for

threads

Detaching Threads

m Thread-based servers:
Use “detached” threads to avoid memory leaks

= At any point in time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread _join) to free memory resources
= Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
= use pthread_detach(pthread_self()) to make detached

m Must be careful to avoid unintended sharing

= For example, what happens if we pass the address of connfd to the
thread routine?

= Pthread_create(&tid, NULL, thread,
(void *)&connfd);

Carnegie Méellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads

= e.g., logging information, file cache

m + Threads are more efficient than processes

m - Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

" The ease with which data can be shared is both the greatest strength
and the greatest weakness of threads

Carnegie Méllon

Today

m Threads: basics
m Synchronization
m Races, deadlocks, thread safety

Carnegie Méellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared variables?

®= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Requires answers to the following questions:
= What is the memory model for threads?
= How are variables mapped to each memory instance?
= How many threads might reference each of these instances?

10

Carnegie Méellon

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process

= Each thread has its own separate thread context

» Thread ID, stack, stack pointer, program counter, condition codes, and general
purpose registers

= All threads share the remaining process context

» Code, data, heap, and shared library segments of the process virtual address
space

= Open files and installed handlers

m Operationally, this model is not strictly enforced:
= Register values are truly separate and protected, but
= Any thread can read and write the stack of any other thread

m Mismatch between the conceptual and operation model

is a source of confusion and errors y

Thread Accessing Another Thread’s Stack

char **ptr; /* global */ /* thread routine */
void *thread(void *vargp)
int main() {
{ int myid = (int) vargp;
int i; static int svar = 0O;
pthread _t tid;
char *msgs[2] = { printf("[%d]: %s (svar=%d)\n",
"Hello from foo", myid, ptrfmyid], ++svar);
"Hello from bar" }

};tr = msgs; /

Peer threads access main thread’s stack
for (i=0;i<2;i++) indirectly through global ptr variable
Pthread_create(&tid,
NULL,
thread,
(void *)i);
Pthread_exit(NULL);

12

Carnegie Méellon

Mapping Variables to Memory Instances

Global var: 1 instance (ptr

[data])

Local vars: 1 instance (I ,, msgs.m)

7

char **ptr; /* global */

int main()
{ o o
int i;
pthread _t tid;
char *msgs|[2] = {
"Hello from foo",
"Hello from bar"
|

ptr = msgs;

for (I=0;1<2;i++)
Pthread_create(&tid,
NULL,
thread,
(void *)i);
Pthread_exit(NULL);

)

Local var: 2 instances (

myid p0 [peer thread 0’s stack],
myid pl [peer thread 1’s stack]

/

/* thread routine *

void *thread(void/*vargp)
{
int myid = (int)vargp;
static int svar = 0;
printf("[%d]: %s (svar=%d)\n",
myid, ptrfmyid], ++svar);
}

/

Local static var: 1 instance (Svar

[data])

13

Carnegie Méellon

Shared Variable Analysis

m Which variables are shared?
Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
svar no yes yes
' m yes no no
msgs, yes yes yes
Myid pO no yes no
Myid pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr , svar , and msgs are shared

m | and myid are not shared
14

Carnegie Méellon

badcnt.c : Improper Synchronization

[* shared */ /[* thread routine */
volatile unsigned int cnt = 0; void *count(void *arg) {
#define NITERS 100000000 int i;
for (i=0; i<NITERS; i++)
int main() { cnt++;
pthread _t tid1, tid2; return NULL;
Pthread_create(&tid1, NULL, }
count, NULL);
Pthread_create(&tid2, NULL, linux> ./badcnt
count, NULL); BOOM! cnt=198841183
Pthread_join(tid1, NULL); linux> ./badcnt
Pthread_join(tid2, NULL); BOOM! cnt=198261801
if (cnt != (unsigned)NITERS*2) linux> ./badcnt
printf("BOOM! cnt=%d\n", BOOM! cnt=198269672
| cn); cnt should be
else
orintf"OK cnt=Y6d\n”. equal to 200,000,000.
_ What went wrong?
cnt);
}

Carnegie Méellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (i=0; i<NITERS; i++)
cnt++;

Corresponding assembly code

.LO:
movl -4(%ebp),%eax
Head (H,) 1 cmpl $99999999,%eax
jle .L12
\ EEEE Jr_nE |__1_0 ________________
L12:
Load cnt (L) movl cnt,%eax # Load
Update cnt (U)) leal 1(%eax),%edx # Update
Storecnt (S) | _ _ _ __ movl %edx.cnt__ # Store
L T T T T T T T T T
movl -4(%ebp),%eax
Tail (T;) < leal 1(%eax),%edx
mov| %edx,-4(%ebp)
NI L
.L10: I

Carnegie Méellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %eax;is the content of %eax in thread i’s context

i (thread) instr, %eax, %eax, cnt
1 H, - - 0 Key:
1 L, 0 - 0 L oad
1 U, 1 - 0 U pdate
1 S, 1 - 1 S tore
2 H, i - 1
2 L, - 1 1
2 u, - 2 1
2 S, - 2 2
2 T, i 2 2
1 T, 1 - 2 OK

17

Carnegie Méellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %eax, %eax, cnt
1 H, - - 0 Key:
1 L, 0 - 0 L oad
1 U, 1 - 0 U pdate
2 H, - - 0 S tore
2 L, z 0 0
1 S, 1 - 1
1 T, 1 - 1
2 u, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

18

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %eax, %eax, cnt
1 H,
1 L,
2 H,
2 L,
2 u,
2 S,
1 U,
1 S,
1 T,
2 T,

m We can analyze the behaviour using a process graph

19

Progress Graphs

Thread 2

(L, S))

*— Thread 1

Carnegie Méellon

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst,, Inst,).

E.g., (L, S,) denotes state
where thread 1 has
completed L, and thread
2 has completed S,.

20

Carnegie Méellon

Trajectories in Progress Graphs

Thread 2 A trajectory is a sequence
of legal state transitions
® o ° o ° % that describes one possible
T concurrent execution of
2
the threads.
o o [o o %
S, Example:
i ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2,
U, $1,T1, U2,S2, T2
o o o x > >d
L,
o o o x [o
H,

21

Carnegie Méellon

Critical Sections and Unsafe Regions

Thread 2 L, U, and S form a
critical section with
? ® o ® ® ® respect to the shared
T, variable cnt
-9 ° ® ® ® O . .
Instructions in critical
il S, sections (wrt to some
cnt;ca ¢ o o ° o o shared variable) should
section .
rt < u, Unsafe region not be interleaved
o o o o o o
cnt Sets of states where such
L, interleaving occurs
N ° ° ° ® o form unsafe regions
H,
¢ ¢ ¢ ¢ ¢ *— Thread 1
g /
N

critical section wrt cnt -

Carnegie Méellon

Critical Sections and Unsafe Regions

Thread 2
safe
7 ° —>e of R Definition: A trajectory is safe
T, iff it does not enter any unsafe
- o o a region
. > Claim: A trajectory is
cr|t|.c al) o——— ® ® ® 4 correct (wrt cnt) iffitis
section . <afe
wrt < U, Unsafe region
cnt 2 ° L — —p
L, unsafe
\ x o o o o
H,
R » ° *— Thread 1
H, L, U, S 1
N\ y
N

critical section wrt cnt ”

Semaphores

m Question: How can we guarantee a safe trajectory?

= We must synchronize the threads so that they never enter an unsafe
state.

m Classic solution: Dijkstra's P and V operations on semaphores
= Semaphore: non-negative global integer synchronization variable
« P(s): [while (s ==0)wait(); s -]
— Dutch for "Proberen” (test)
= V(s): [s++;]
— Dutch for "Verhogen" (increment)
= (OS guarantees that operations between brackets [] are executed
indivisibly
= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: (s >= 0) 2

badcnt.c :Improper Synchronization

[* shared */ /[* thread routine */
volatile unsigned int cnt = 0; void *count(void *arg) {
#define NITERS 100000000 int i;
for (i=0; IKNITERS; i++)
int main() { cnt++;
pthread _t tid1, tid2; return NULL;
Pthread_create(&tid1, NULL, }

count, NULL);
Pthread_create(&tid2, NULL, How to fix using semaphores?
count, NULL); S P '
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

if (cnt != (unsigned)NITERS*2)
printf("BOOM! cnt=%d\n",
cnt);
else
printf("OK cnt=%d\n",
cnt);

25

Carnegie Méellon

Safe Sharing with Semaphores

m One semaphore per shared variable
m Initially setto 1

m Here is how we would use P and V operations to synchronize
the threads that update cnt

[* Semaphore s is initially 1 */

[* Thread routine */
void *count(void *arg)

{

Int I;

for (I=0; IKNITERS; i++) {
P(s);
cnt++;
V(s);

}

return NULL;

Carnegie Méellon

Safe Sharing With Semaphores

Thread 2
, 1 0 0 0 0 1 , Provide mutually ex?luswe
' y ° y ° y ° ° access to shared variable by
T, surrounding critical section
3 o0 . Ot with P and V operations on
V(s) Forbidden region semaphore s (initially set to 1)
0 0 0 0
S, : : 1 Semaphore invariant
0 LU -1 el e Lo 0 creates a forbidden region
U that encloses unsafe region
2'0 0 P » ot 4l Lo o0 and is entered by any
trajectory
I'2
0 0 1 1 1 1 0 0
P(s) 1 1 0 0 0 0 1 1
HZ
1 1 Lo 0 . O ! ' Thread 1
A H Ps) L, U S V) T,
Initiall
y 27

s=1

Carnegie Méellon

Wrappers on POSIX Semaphores

/[* Initialize semaphore sem to value */
[* pshared=0 if thread, pshared=1 if process */
void Sem_init(sem_t *sem, int pshared, unsigned int value) {
if (sem_init(sem, pshared, value) < 0)
unix_error("Sem_init");

}

[* P operation on semaphore sem */
void P(sem_t *sem) {
if (sem_wait(sem))
unix_error("P");

}

[* V operation on semaphore sem */
void V(sem _t *sem) {
if (sem_post(sem))
unix_error("V");

28

Carnegie Méellon

Sharing With POSIX Semaphores

[* properly sync’d counter program */ [* thread routine */
#include "csapp.h” void *count(void *arg)
#define NITERS 10000000 {
Int i;
volatile unsigned int cnt;
sem_t sem,; [* semaphore */ for (i=0; iKNITERS; i++) {
P(&sem);
int main() { cnt++;
pthread _t tid1, tid2; V(&sem);
}
Sem_init(&sem, 0, 1); /* sem=1 */ return NULL;
}

[* create 2 threads and wait */ .
Warning:
’ |
if (cnt != (unsigned)NITERS*2) It’s really slow!
printf("BOOM! cnt=%d\n", cnt);
else
printf("OK cnt=%d\n", cnt);
exit(0);

29

Carnegie Méllon

Today

m Threads: basics
m Synchronization
m Races, deadlocks, thread safety

30

Carnegie Méellon

One worry: races

m A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches pointy

/* a threaded program with a race */

int main() {
pthread _t tid[N];
int i;
for(1 =0; 1 <N; 1I++)
Pthread_create(&tid[i], NULL, thread, &i); Where is
for (i =01 <N;i++) the race?
Pthread_join(tid[i], NULL);
exit(0);
}

[* thread routine */

void *thread(void *vargp) {
int myid =*((int *)vargp);
printf("Hello from thread %d\n", myid);
return NULL;

KY|

Carnegie Méellon

Race Elimination

m Make sure don’t have unintended sharing of state

/* a threaded program with a race */
int main() {
pthread _t tid[N];
int i;
for (i=0;i<N; i++){
int *valp = malloc(sizeof(int));
*valp = 1;
Pthread_create(&tid[i], NULL, thread, valp);
for (i=0;1<N; i++)
Pthread_join(tid[i], NULL);
exit(0);
}

/[* thread routine */
void *thread(void *vargp) {
int myid = *((int *)vargp);
free(vargp);
printf("Hello from thread %d\n", myid);
return NULL,;

Carnegie Méellon

Another worry: Deadlock

m Processes wait for condition that will never be true

m Typical Scenario
= Processes 1 and 2 needs two resources (A and B) to proceed
" Process 1 acquires A, waits for B
® Process 2 acquires B, waits for A
= Both will wait forever!

33

Deadlocking With POSIX Semaphores

int main()

{
pthread _t tid[2];
Sem_init(&mutex[0], O, 1); [* mutex[0] = 1 */
Sem_init(&mutex[1], O, 1); [* mutex[1] =1 */

Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);

Pthread_join(tid[1], NULL);

printf(*cnt=%d \ n", cnt);

exit(0);

}

void *count(void *vargp)

{ - Tid[0]: Tid[1]:
int ié}l = (int) vargp; P(so); P(sy);
for (i = 0; i < NITERS; i++) { P(s,); P(so);

P(&mutex[id]); P(&mutex[1-id]); cnt++; cnt++;
cnt++; V(so); V(Sl);
V(&mutex[id]); V(&mutex[1-id]); V(s,); V(s,);

}
return NULL;
}

Carnegie Méellon

Deadlock Visualized in Progress Graph

Thread 2 Locking introduces the
potential for deadlock:
waiting for a condition that

deadlock will never be true

Forbidden region state
fors,

V(So)]
Any trajectory that enters
the deadlock region will

V(s;) - eventually reach the
deadlock state, waiting for

either Spor S, to become
P(so) — ® nonzero

Forbidden region
deadlock Other trajectories luck out and

i or s
P(s,) - e 102, skirt the deadlock region
| | I I Thread 1 Unfortunate fact: deadlock is
P(s,) P(s,) V(s,) V(s,) often non-deterministic

SO=51=1
35

Carnegie Méellon

AVOid in g Dead IOCk Acquire shared resources in same order

int main()

{
pthread _t tid[2];
Sem_init(&mutex[0], O, 1); [* mutex[0] = 1 */
Sem_init(&mutex[1], O, 1); [* mutex[1] =1 */

Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);

Pthread_join(tid[1], NULL);

printf(*cnt=%d \ n", cnt);

exit(0);

}

void *count(void *vargp)

{ - Tid[0]: Tid[1):
intid = (int) vargp; P(s0); P(s0);
for (i = 0; i < NITERS; i++) { P(s1); P(s1);

P(&mutex[0]); P(&mutex[1]); cnt++; cnt++;
cnt++; V(s0); V(s1);
V(&mutex[id]); V(&mutex[1-id]); V(sl1); V(s0);

}
return NULL;
} 36

Avoided Deadlock in Progress Graph

Thread 2 No way for trajectory to get
stuck
V(s,) — Processes acquire locks in
Forbidden region same order
fors,
V(s,) - Order in which locks released
Forbidden region immaterial
fors,
P(s,)—
P(s,) —
| | I | Thread 1

P(s,) P(s,) V(s,) V(s,)

SO=51=1
37

Carnegie Méellon

Crucial concept: Thread Safety

m Functions called from a thread (without external
synchronization) must be thread-safe

= Meaning: it must always produce correct results when called
repeatedly from multiple concurrent threads

m Some examples of thread-unsafe functions:
= Failing to protect shared variables
= Relying on persistent state across invocations
= Returning a pointer to a static variable
= Calling thread-unsafe functions

38

Carnegie Méellon

Thread-Unsafe Functions (Class 1)

m Failing to protect shared variables

= Fix: Use P and V semaphore operations
= Example: goodcnt.c

" |ssue: Synchronization operations will slow down code
= e.g., badcnt requires 0.5s, goodcnt requires 7.9s

39

Carnegie Méellon

Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations
= Example: Random number generator (RNG) that relies on static state

[* rand: return pseudo-random integer on 0..32767 * /
static unsigned int next = 1;
int rand(void)
{
next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{
}

next = seed;

40

Carnegie Méellon

Making Thread-Safe RNG

m Pass state as part of argument
= and, thereby, eliminate static state

[* rand - return pseudo-random integer on 0..32767 * /

int rand_r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

m Consequence: programmer using rand must maintain seed

41

Carnegie Méellon

Thread-Unsafe Functions (Class 3)

m Returning aptrtoa struct hostent
static variable *gethostbyname(char name)
{

static struct hostent h;
<contact DNS and fill in h>
m Fixes: return &h:

= 1. Rewrite code so caller)

passes pointer to struct hostp = Malloc(...);
gethostbyname_r(name, hostp);

— Issue: Requires changes in
caller and callee

struct hostent
= 2. Lock-and-copy *gethostbyname_ts(char *name)

— Issue: Requires onl {
9 y struct hostent *q = Malloc(...);

simple changes in caller struct hostent *p:
(and nonein callee) P(&mutex); /* lock */
— However, caller must free p = gethostbyname(name);
*q — *p; [* copy */
memory V(&mutex);
return q;

Carnegie Méellon

Thread-Unsafe Functions (Class 4)

m Calling thread-unsafe functions

= Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

= Fix: Modify the function so it calls only thread-safe functions ©

43

Carnegie Méellon

Thread-Safe Library Functions

m All functions in the Standard C Library (at the back of your
K&R text) are thread-safe

= Examples: malloc ,free , printf , scanf

m Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r

ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
Inet_ntoa 3 (none)

localtime 3 localtime _r

rand 2 rand r

Carnegie Méellon

Threads Summary

m Threads provide another mechanism for writing
concurrent programs

m Threads are very popular

= Somewhat cheaper than processes

= Easy to share data between threads

= Make use of multiple cores for parallel algorithms
m However, the ease of sharing has a cost:

= Easy to introduce subtle synchronization errors
" Tread carefully with threads!

m For more info:

= D. Butenhof, “Programming with Posix Threads”, Addison-Wesley,
1997

45

