Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, fall 2009
17t Lecture, Oct. 27t

Instructors:
Roger Dannenberg and Greg Ganger

Carnegie Mellon

Last Time: Dynamic Memory Allocation

pl = malloc(4)

©
N
[

malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Last Time: Fragmentation

m Internal:
block
A
o N\
Internal Internal
fragmentation PERIEER fragmentation

m External:

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
" When do we go ahead and split free blocks?
" How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" |mmediate coalescing: coalesce each time Free() is called

" Deferred coalescing: try to improve performance of free() by
deferring coalescing until needed. Examples:

= Coalesce as you scan the free list for mal loc()

= Coalesce when the amount of external fragmentation reaches
some threshold

Carnegie Mellon

Today

m Dynamic memory allocation:
= Explicit free lists
= Segregated free lists

m Memory-related perils & pitfalls

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Carnegie Mellon

Explicit Free Lists

Allocated (as before) Free
size a size a
next
payload and s
padding
size a size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area

Carnegie Mellon

Explicit Free Lists

m Logically:

—
v

/ Forward (next) links
A m B

4 —5 4|4 46 /| < 64 4 a4) 4

C \/
K Back (prev) links

Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic

Before

22

After (with splitting)

W

= malloc(.)

Carnegie Mellon

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro: simple and constant time

= Con: studies suggest fragmentation is worse than address ordered

= Address-ordered policy

= Insert freed blocks so that free list blocks are always in address
order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

= Pro: studies suggest fragmentation is lower than LIFO

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before
free(p)

Root % o)

m Insert the freed block at the root of the list

After

Root [l @

Freeing With a LIFO Policy (Case 2)

conceptual graphic

ao

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

o
Root.—blO ‘%E

ol

Before free(p)

Root i I

Freeing With a LIFO Policy (Case 3)

conceptual graphic
Before free)

Root } I a O

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Root I ‘K_I‘I\«A\@

Freeing With a LIFO Policy (Case 4)

conceptual graphic

iy

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

BEfore free)

Root i I

After

Carnegie Mellon

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5| 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1_2 > > > —>

5-8 > —>

g'inf b

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)

m To free a block:
" Coalesce and place on appropriate list (optional)

m Advantages of seglist allocators
= Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Carnegie Mellon

More Info on Allocators

m D. Knuth, “The Art of Computer Programming”, 2" edition,
Addison Wesley, 1973

" The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

Carnegie Mellon

Today

m Dynamic memory allocation:
= Explicit free lists
m Segregated free lists

m Memory-related perils & pitfalls

Memory-Related Perils and Pitfalls

m Dereferencing bad pointers

m Reading uninitialized memory

m Overwriting memory

m Referencing nonexistent variables
m Freeing blocks multiple times

m Referencing freed blocks

m Failing to free blocks

Dereferencing Bad Pointers

m The classic scant bug

int val;

scant(“%d”, val);

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

Int *matvec(int **A, Int *x) {
int *y = malloc(N*si1zeof(int));
int 1, j;

for (1=0; I<N; 1++)
for (J=0; J<N; jJ++)
yLr] += AL 1*x01;
return y;

}

Carnegie Mellon

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

Overwriting Memory

m Off-by-one error

int **p;
p = malloc(N*sizeof(int *));

for (1=0; i<=N; i++) {
p[1] = malloc(M*si1zeof(int));

}

Overwriting Memory

m Not checking the max string size

char s[8];
int 1;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
® 1988 Internet worm

=" Modern attacks on Web servers
= AOL/Microsoft IM war

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p = val)
p += sizeof(int);

return p;

}

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo) {
int val;

return &val;

}

Freeing Blocks Multiple Times

m Nasty!

x = malloc(N*sizeof(int));
<manipulate x>
free(X);

y = malloc(M*sizeof(int));

<manipulate y>
free(X);

Carnegie Mellon

Implicit List: Coalescing

m Join (coalesce) with next and/or previous blocks, if
they are free

= Coalescing with next block

void free block(ptr p) {

*p = *p & -2;

next = p + *p;

IT (Cnext & 1) == 0)
*P = *p + *next;

// clear allocated flag
// Tind next block

// add to this block 1f
// not allocated

free(p)

Logically gone

= But how do we coalesce with previous block?

Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof(int));

<manipulate x>
free(X);

y = mal loc(M*sizeof(int));
for (i=0; i<M; i++)
yL1] = x[1]++;

Carnegie Mellon
Fa|||||ng to Free Blocks

(Memory Leaks)

= Slow, long-term Kkiller!

foo() {

int *x = malloc(N*si1zeof(int));

return;

}

Carnegie Mellon
Fa|||||ng to Free Blocks

(Memory Leaks)

m Freeing only part of a data structure

struct list {
int val;
struct list *next;

};
foo() {

struct list *head = malloc(sizeof(struct list));
head->val = O;

head->next = NULL;

<create and manipulate the rest of the list>

free(head):
return;

Dealing With Memory Bugs

= Conventional debugger (gdb)
" Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

m Debugging mal loc (UToronto CSRI mal 1oc)

= Wrapper around conventional mal loc

= Detects memory bugs at mal loc and free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times
= Memory leaks

= Cannot detect all memory bugs
= Overwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks

Dealing With Memory Bugs (cont.)

m Some malloc implementations contain checking code
®= Linux glibc malloc: setenv MALLOC CHECK 2
= FreeBSD: setenv MALLOC_ OPTIONS AJR
m Binary translator: valgrind (Linux), Purify
= powerful debugging and analysis technique
= Rewrites text section of executable object file
" Can detect all errors as debugging mal loc
= Can also check each individual reference at runtime
= Bad pointers
= Overwriting

= Referencing outside of allocated block

m Garbage collection (Boehm-Weiser Conservative GC)
= Let the system free blocks instead of the programmer

Carnegie Mellon

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

m Common in functional languages, scripting languages, and
modern object oriented languages:
= Lisp, ML, Java, Perl, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

Carnegie Mellon

Garbage Collection

m How does the memory manager know when memory can be
freed?

" |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an Int, and then back again)

Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Memory as a Graph

Carnegie Mellon

m We view memory as a directed graph

= Each block is a node in the graph

= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes Q

O

Q
\

Heap nodes

L

N«

O reachable

Not-reachable

O (garbage)

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

Mark and Sweep Collecting

m Can build on top of malloc/free package
= Allocate using malloc until you “run out of space”

m When out of space:
= Use extra mark bit in the head of each block
= Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

v
Before mark I_U/ |

After mark | |

—

e
S

_I Mark bit set

free _I

After sweep | _| | free

Carnegie Mellon

Assumptions For a Simple Implementation

m Application
= new(n): returns pointer to new block with all locations cleared
= read(b, 1) : read location 1 of block b into register
= write(b,1,v): writeVvintolocation 1 of block b

m Each block will have a header word
= addressed as b[-1], forablockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
= Is_ptr(p): determines whether p is a pointer
= length(b): returns the length of block b, not including the header
= get roots(): returns all the roots

Carnegie Mellon

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
iIf (lis _ptr(p)) return; // do nothing 1f not pointer
It (markBitSet(p)) return; // check i1t already marked
setMarkBit(p); // set the mark bit
for (1=0; 1 < length(p); 1++) // call mark on all words

mark(p[i]); // in the block

return;

+

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) {
1T markBitSet(p)
clearMarkBit();
else 1T (allocateBitSet(p))
free(p);
p += length(p);

Carnegie Mellon

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs

= 1s_ptr() determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr

header l

m So how to find the beginning of the block?

= Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)

= Balanced-tree pointers can be stored in header (use two additional

words
) head data

size , N
/ \ Left: smaller addresses
left right Right: larger addresses

