Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, fall 2009
17t Lecture, Oct. 27t

Instructors:
Roger Dannenberg and Greg Ganger

Carnegie Mellon

Last Time: Fragmentation

= Internal:
block

Internal e Internal
fragmentation pay! fragmentation

m External:

(TTTTTIT I T ITTT 1]

p4 = malloc(6) Oops! (what would happen now?)

Today

= Dynamic memory allocation:
= Explicit free lists
= Segregated free lists

m Memory-related perils & pitfalls

Carnegie Mellon

Last Time: Dynamic Memory Allocation

pL=mattoc¢) [[TTTTITTITTTTTTTT]

p2=malloc [[TTTTTTTTTTTTTTT]

p3=mattoc® [[T TTTTTTTTTTTTT]

free(p2) (TITTTITITTITTTITTT]

pa=malloc [[TTTTTTTTITTTTTTT]

Carnegie Mellon

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
Trades off lower throughput for less fragmentation

Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
® When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
= |mmediate coalescing: coalesce each time free() is called

= Deferred coalescing: try to improve performance of free() by
deferring coalescing until needed. Examples:

= Coalesce as you scan the free list for mal loc()

= Coalesce when the amount of external fragmentation reaches
some threshold

Carnegie Mellon

Keeping Track of Free Blocks
m Method 1: Implicit free list using length—links all blocks
/\/\/_\

(LT T T T Tel T T [T [2I7]

m Method 2: Explicit free list among the free blocks using pointers

/\
(1A [[T e[T [[T 2]

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size
= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Carnegie Mellon

Explicit Free Lists

Allocated (as before) Free
size I a size a
next
payload and (P
padding
size [a size a

= Maintain list(s) of free blocks, not all blocks
= The “next” free block could be anywhere
= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area

Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic
Before %.

(with splitting)

ol
R e—

= malloc(..)

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)

conceptual graphic
Before
free(p)

Root ¥ DD LT \@g

m Insert the freed block at the root of the list

After

Root [T Tefol [TTTT] j;z

Carnegie Mellon

Explicit Free Lists

m Logically:

B S — N = N

m Physically: blocks can be in any order

Forward (next) links

A B
[al frTefal T Tale] T [[elal T Ta]a['] [e]
A e~

Back (prev) links

Carnegie Mellon

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro: simple and constant time
= Con: studies suggest fragmentation is worse than address ordered

= Address-ordered policy

= Insert freed blocks so that free list blocks are always in address
order:
addr(prev) < addr(curr) < addr(next)
= Con: requires search

= Pro: studies suggest fragmentation is lower than LIFO

Carnegie Mellon

Freeing With a LIFO Policy (Case 2)

conceptual graphic

Before free(p)

oot ¥ B[[LEDTIEEDN
B S

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

RootI—>\ITOHHHHH\

Carnegie Mellon

Freeing With a LIFO Policy (Case 3)

conceptual graphic

Before free(p)
A
—»—V |
root ¥~ CDDDELL] m&\mio

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Root

Carnegie Mellon

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

Carnegie Mellon

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

a [T THITTHITT =
se [[T TTTTHTITTTTH
st [T TTTTTTTTTTTITIT

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

Carnegie Mellon

Freeing With a LIFO Policy (Case 4)

conceptual graphic
[elo] |

¢%& T

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before

Root

After

Root [e]

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

/_\/-\/\
(L LT T [T el T T 1T 211

m Method 2: Explicit list among the free blocks using pointers

/\
(I T [T Tel T T 1T 2]

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Carnegie Mellon

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m >n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
= |If no block is found, try next larger class
® Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)

m To free a block:
= Coalesce and place on appropriate list (optional)

= Advantages of seglist allocators
= Higher throughput
= log time for power-of-two size classes
= Better memory utilization
= First-fit search of segregated free list approximates a best-fit
search of entire heap.
= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Today

m Dynamic memory allocation:
= Explicit free lists
= Segregated free lists

= Memory-related perils & pitfalls

Dereferencing Bad Pointers

m The classic scanT bug

int val;

scanf(“%d”, val);

More Info on Allocators

m D. Knuth, “The Art of Computer Programming”, 2" edition,
Addison Wesley, 1973

= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

Memory-Related Perils and Pitfalls

m Dereferencing bad pointers

m Reading uninitialized memory

m Overwriting memory

m Referencing nonexistent variables
u Freeing blocks multiple times

m Referencing freed blocks

m Failing to free blocks

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {
int *y = malloc(N*sizeof(int));
int i, j;
for (i=0; i<N; i++)
for (J=0; j<N; j++)
yLil += ALII01*x0]:

return y;

Overwriting Memory Overwriting Memory

m Allocating the (possibly) wrong sized object u Off-by-one error

int **p;

int **p;
p = malloc(N*sizeof(int)); p = malloc(N*sizeof(int *));

§i=0- i<N- i for (i=0; i<=N; i++) {
forpE:iO_ ,;;,;‘io::azs}[zeof(int)); N pLi]1 = malloc(M*sizeof(int));
3

Carnegie Mellon Carnegie Mellon

Overwriting Memory Overwriting Memory
m Not checking the max string size m Misunderstanding pointer arithmetic
char s[8]; int *search(int *p, int val) {
int i;
~ while (*p && *p != val)
gets(s); /* reads *“123456789” from stdin */ p += sizeof(int);
return p;
m Basis for classic buffer overflow attacks H

= 1988 Internet worm
= Modern attacks on Web servers
= AOL/Microsoft IM war

Carnegie Mellon Carnegie Mellon

Referencing Nonexistent Variables Freeing Blocks Multiple Times
m Forgetting that local variables disappear when a function m Nasty!
returns
x = malloc(N*sizeof(int));
int *foo) { <manipulate x>
int val; free(xX);

y = malloc(M*sizeof(int));
<manipulate y>
free(X);

return &val;

b3

Carnegie Mellon

Implicit List: Coalescing

m Join (coalesce) with next and/or previous blocks, if
they are free

® Coalescing with next block

void free_block(ptr p) {
*p=*p & -2; // clear allocated flag
next = p + *p; // find next block
if (C*next & 1) == 0)

*p = *p + *next; // add to this block if
3 V24 not allocated
LT T Tl T T Te 2] T2 ,
free(p) B Logically gone

= But how do we coalesce with previous block?

Failing to Free Blocks

(Memory Leaks)

u Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof(int));
Féturn;

¥

Carnegie Mellon

Dealing With Memory Bugs

= Conventional debugger (gdb)
= Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

= Debugging mal l1oc (UToronto CSRI mal 1oc)

= Wrapper around conventional mal loc

= Detects memory bugs at mal loc and free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times
= Memory leaks

= Cannot detect all memory bugs
= Overwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks

Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof(int));
<manipulate x>
free(X);

y ;'ma loc(M*sizeof(int));
for (i i<M; i++)

y[i] = x[i]++;

Failing to Free Blocks

(Memory Leaks)

m Freeing only part of a data structure

struct list {
int val;
struct list *next;
15
foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
free(head);
return;
3

Dealing With Memory Bugs (cont.)

m Some malloc implementations contain checking code
= Linux glibc malloc: setenv MALLOC_CHECK_ 2
= FreeBSD: setenv MALLOC_OPTIONS AJR
m Binary translator: valgrind (Linux), Purify
= powerful debugging and analysis technique
= Rewrites text section of executable object file
= Can detect all errors as debugging mal loc
® Can also check each individual reference at runtime
= Bad pointers
= Overwriting
= Referencing outside of allocated block
m Garbage collection (Boehm-Weiser Conservative GC)
= Let the system free blocks instead of the programmer

Carnegie Mellon

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in functional languages, scripting languages, and
modern object oriented languages:
= Lisp, ML, Java, Perl, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Mark and Sweep Collecting

m Can build on top of malloc/free package
= Allocate using malloc until you “run out of space”
= When out of space:
= Use extra mark bit in the head of each block
= Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

root
Beforemark [[T T T LT T TATTTTTT]
AN I
Aftermark [T 1 T T LT T 1A T T TTT T [werkbitser

/Ny
Aftersweep |] [free [LT 717 free []]

Garbage Collection

= How does the memory manager know when memory can be
freed?
= |n general we cannot know what is going to be used in the future since it
depends on conditionals
= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

Carnegie Mellon

Memory as a Graph

= We view memory as a directed graph
= Each block is a node in the graph
Each pointer is an edge in the graph

Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes P (? C{

Heap nodes O reachable
O Not-reachable
(garbage)
o(i ©

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

Assumptions For a Simple Implementation

m Application
= new(n): returns pointer to new block with all locations cleared
= read(b, 1) : read location i of block b into register
= write(b,i,v): write vinto location i of block b

m Each block will have a header word
= addressed as b[-1], for a block b
= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
= is_ptr(p): determines whether p is a pointer
= length(b): returns the length of block b, not including the header
= get_roots(): returns all the roots

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
if (Yis_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked

setMarkBit(p); // set the mark bit

for (i=0; i < length(p); i++) // call mark on all words
mark(p[i]); // in the block

return;

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) {
if markBitSet(p)
clearMarkBit();
else if (allocateBitSet(p))
free(p);
p += length(p);

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs
= is_ptr() determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr
header

|
[[] [T 1

m So how to find the beginning of the block?
= Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)
= Balanced-tree pointers can be stored in header (use two additional

[]
Left: smaller addresses

Right: larger addresses

words)

