Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, fall 2009
16 Lecture, Oct. 22t

Instructors:
Gregory Kesden and Markus Pischel

Carnegie Mellon

Process Memory Image

I memory protected

kernel virtual memory from user code

stack

%esp ‘

Allocators request
additional heap memory
from the kernel using the

sbrk() function: f
O the “brk” ptr

error = sbrk(amt_more) run-time heap (via mal loc)

uninitialized data (.bss)

initialized data (.data)

program text (.text)

Dynamic Memory Allocation

= Memory allocator?
= VM hardware and kernel allocate pages
= Application objects are typically smaller
= Allocator manages objects within pages

Application

Dynamic Memory Allocator

Heap Memory

m Explicit vs. Implicit Memory Allocator
= Explicit: application allocates and frees space
= InC: malloc() and free()
= Implicit: application allocates, but does not free space
= InJava, ML, Lisp: garbage collection
m Allocation
= A memory allocator doles out memory blocks to application
= A “block” is a contiguous range of bytes
= of any size, in this context

m Today: simple explicit memory allocation

Today

= Dynamic memory allocation

Why Dynamic Memory Allocation?

m Sizes of needed data structures may only be known at
runtime

Malloc Package

m #include <stdlib.h>
m void *malloc(size_t size)
= Successful:
= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary
= Ifsize == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno
m void free(void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc() orrealloc()
m void *realloc(void *p, size_t size)
= Changes size of block p and returns pointer to new block
= Contents of new block unchanged up to min of old and new size
= 0ld block has been free()'d (logically, if new != old)

Malloc Example

void foo(int n, int m) {
int i, *p;

/* allocate a block of n ints */
p = (int *)malloc(n * sizeof(int));
if (p == NULL) {

perror(“malloc™);

exit(0);

3

for (i=0; i<n; i++) p[i] = i;

/* add m bytes to end of p block */

if ((p = (int ®)realloc(p, (n+m) * sizeof(int))) == NULL) {
perror(“realloc™);
exit(0);

3

for (i=n; i < n+m; i++) p[i] = i;

/* print new array */

for (i=0; i<n+m; i++)

printfC%a\n", pLil);

free(p); /* return p to available memory pool */

Carnegie Mellon

Allocation Example

pL=mattoc(d [[TTTTITTTITITITT]

p2=malloc® [[[[TTTTTTTTTTTTT]

p3=matloc®) [[T [[TTTTTTTTTTTT]

free(p2) (TTTTITIT T I I T]

pd=mallocd [[TTTTTTTTTTTTTTT]

Carnegie Mellon

Performance Goal: Throughput

= Given some sequence of mal loc and free requests:
" Ry Ry .y Ry, Ry

m Goals: maximize throughput and peak memory utilization
= These goals are often conflicting

m Throughput:
= Number of completed requests per unit time
= Example:
= 5,000 malloc() calls and 5,000 free() calls in 10 seconds
= Throughput is 1,000 operations/second
= How to do malloc() and free() in O(1)? What’s the problem?

Carnegie Mellon

Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a pointer)

— —
Allocated block Free block
(4 words) (3 words) D Free word

D Allocated word

Constraints

n Applications
= Can issue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= i.e., can’t reorder or buffer requests
®= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (I ibc malloc) on Linux boxes
= Can manipulate and modify only free memory
= Can’t move the allocated blocks once they are malloc()’'d
= i.e., compaction is not allowed

Carnegie Mellon

Performance Goal: Peak Memory Utilization

= Given some sequence of mal loc and free requests:
® Ry Ry . Ryos Ry

m Def: Aggregate payload P,
= malloc(p) results in a block with a payload of p bytes

= After request R has completed, the aggregate payload P, is the sum of
currently allocated payloads

= allmal loc()’d stuff minus all free()’d stuff

m Def: Current heap size = H,
= Assume H, is monotonically nondecreasing
= reminder: it grows when allocator uses sbrk()

m Def: Peak memory utilization after k requests
" Ug=(maxiy P;) / Hy

Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pr=matloc¢) [[TTTTTTTTTTTTITTT]

p2=matloc) [[[T TTTTTTTTTTTTIT]

p3=malloc®) [[[T TTTTTTTTTTTTT]

free(p2) (TTTTTIT I T ITTT 1]

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
= Thus, difficult to measure

Knowing How Much to Free

= Standard method
= Keep the length of a block in the word preceding the block
= This word is often called the header field or header
= Requires an extra word for every allocated block

|
po=mattoc® [[[T [[T] !5 \T/
blocksize data

free) [[[T [TTTT T T TTT T

Carnegie Mellon

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

block

Internal ayload Internal
fragmentation pay fragmentation

m Caused by
= overhead of maintaining heap data structures
= padding for alignment purposes
= explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
= thus, easy to measure

Implementation Issues

= How to know how much memory is being free()’d when
it is given only a pointer (and no length)?

= How to keep track of the free blocks?

m What to do with extra space when allocating a block that is
smaller than the free block it is placed in?

m How to pick a block to use for allocation—many might fit?

m How to reinsert a freed block into the heap?

Carnegie Mellon

Keeping Track of Free Blocks
m Method 1: Implicit list using length—links all blocks
/\/\/\

(LT T T Tl T Tel T T [T 2]

m Method 2: Explicit list among the free blocks using pointers

/\
I T Ta el [T 1T [2]]

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Method 1: Implicit List

m For each block we need: length, is-allocated?
= Could store this information in two words: wasteful!

m Standard trick
= |f blocks are aligned, some low-order address bits are always 0
= |nstead of storing an always-0 bit, use it as a allocated/free flag
= When reading size word, must mask out this bit

1 word
size [a a = 1: allocated block
a = 0: free block
Format of
allocated and Bayioed size: block size
free blocks -
payload: application data
(blocks only)
optional
padding

Bit Fields

= How to represent the Header: Masks and bitwise operators
#define SI1ZEMASK (~0x7)
#define PACK(size, alloc) ((size) | (alloc))
#define GET_SIZE(p) ((p)->size & SIZEMASK)

Bit Fields

struct {
unsigned allocated:1;
unsigned size:31;

} Header;

Check your K&R: structures are not necessarily packed

Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:

= Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }
= But can lead to “false fragmentation”

(el [T T ol T T 121 20
free(p) P
[al T [[a[TTTal [T [2] [2]7]

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits: (Cost?)

p = start;
while ((p < end) && \\ not passed end
@Wp &1 ll \\ already allocated

Cp <= len))) \\ too small
p=p+ Cpé&-2); \\ goto next block (word addressed)

® Can take linear time in total number of blocks (allocated and free)
® |In practice it can cause “splinters” at beginning of list
m Next fit:
= Like first-fit, but search list starting where previous search finished
= Should often be faster than first-fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse
m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually helps fragmentation
= Wil typically run slower than first-fit

Carnegie Mellon

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

T~ T~
[l T T T T T T T 12170
f
p

addblock(p, 4)

[l T T TalTT el T T2l T2]7]

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
*(p+newsize) = oldsize - newsize; // set length in remaining
3} // part of block

Implicit List: Coalescing

= Join (coalesce) with next/previous blocks, if they are free
® Coalescing with next block

N TN TN

LT T s T 1 B
free(p) P gone

[al [[TalTTTel T 1 [2] [2[7]

void free_block(ptr p) {

*p=*p & -2; // clear allocated flag

next = p + *p; // find next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
3} // not allocated

= But how do we coalesce with previous block?

Carnegie Mellon Carnegie Mellon

Implicit List: Bidirectional Coalescing Constant Time Coalescing
m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
. Case 1 Case 2 Case 3 Case 4
= |mportant and general technique!
allocated allocated free free
block being
(¢ [Jalal'TTalel T [T [sJa"TTel freed free allocate free
Header ——| size l a
I d block
Format of free block
allocated and payload and size: total block size
free blocks padding :
payload: application data
Boundary tag ——f size a (allocated blocks only)
(footer)
Constant Time Coalescing (Case 1) Constant Time Coalescing (Case 2)
m [1 mi [1 m |1 m [1
mi |1 mi |1 mi |1 mi |1
n 1 n lo n 1 n+m2 0
n ‘ 1 n ‘ 0 n ‘ 1
m2 |1 m2 |1 m2_ |0
m2__ |1 m2_ |1 m2__|o n+m2__ [0
Constant Time Coalescing (Case 3) Constant Time Coalescing (Case 4)
mi_ o nml | 0 mi_ o ntmim2 | 0
mi o mi_ |0
n ‘ 1 n ‘ 1
—_— —_—
n [1 nmi | 0 n [1
m2 |1 m2 |1 m2_ o
m2_ |1 m2__ |1 m2__[o nemism2 | 0

Carnegie Mellon Carnegie Mellon

Disadvantages of Boundary Tags Summary of Key Allocator Policies

m Placement policy:
First-fit, next-fit, best-fit, etc.
Trades off lower throughput for less fragmentation

= Can it be optimized? Interesting observation: segregated free lists (next lecture)
) approximate a best fit placement policy without having to search
= Which blocks need the footer tag? entire free list

® What does that mean?

= Internal fragmentation

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
= Immediate coalescing: coalesce each time free() is called
= Deferred coalescing: try to improve performance of free() by
deferring coalescing until needed. Examples:
= Coalesce as you scan the free list formal loc()
= Coalesce when the amount of external fragmentation reaches
some threshold

Implicit Lists: Summary

= Implementation: very simple
m Allocate cost:
= linear time worst case
m Free cost:
® constant time worst case
= even with coalescing
= Memory usage:
= will depend on placement policy
= First-fit, next-fit or best-fit

= Not used in practice for mal loc()/free() because of
linear-time allocation
= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

