
Disk-based Storage
Oct. 20, 2009

TopicsTopics
� How disk storage fits in systems
� Performance effects of paging
� How disks work

lecture-15.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, F’09

Announcements
Yet another cheating noteYet another cheating note

� taking ANY code from the web is cheating
� shouldn’t even be looking for code to solve your problems

� only exceptions: code from the 15-213 book, 15-213 website, or the
csapp website associated with the 15-213 book

3 15-213, F’09

Disk-based storage in computers
�� Memory/storage hierarchyMemory/storage hierarchy

� Combining many technologies to balance costs/benefits
� Recall the virtual memory lecture

4 15-213, F’09

Memory/storage hierarchies
�� Balancing performance with costBalancing performance with cost

� Small memories are fast but expensive
� Large memories are slow but cheap

�� Exploit locality to get the best of both worldsExploit locality to get the best of both worlds
� locality = re-use/nearness of accesses
� allows most accesses to use small, fast memory

C
ap

ac
ity

Pe
rf

or
m

an
ce

5 15-213, F’09

An Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

From lecture-9.ppt

6 15-213, F’09

Reminder: Page Faults
A A page faultpage fault is caused by a reference to a VM word that is not in is caused by a reference to a VM word that is not in
physical (main) memoryphysical (main) memory
� Example: An instruction references a word contained in VP 3, a miss

that triggers a page fault exception

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

From lecture-14.ppt

7 15-213, F’09

Performance and page faults
�� First: how often do they happen?First: how often do they happen?

� depends! (on workloads and memory sizes)
� in most systems, very rare
� scenario: random access to 4GB of VM with 2GB real memory

� 50% of memory access will generate page faults

8 15-213, F’09

Disk-based storage in computers
�� Memory/storage hierarchyMemory/storage hierarchy

� Combining many technologies to balance costs/benefits
� Recall the virtual memory lecture

�� PersistencePersistence
� Storing data for lengthy periods of time

� DRAM/SRAM is “volatile”: contents lost if power lost
� Disks are “non-volatile”: contents survive power outages

� To be useful, it must also be possible to find it again later
� this brings in many interesting data organization, consistency,

and management issues
� take 18-746/15-746 Storage Systems ☺

9 15-213, F’09

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics

SCSI
connector

Image courtesy of Seagate Technology

10 15-213, F’09

Disk Electronics

• Connect to disk

• Control processor

• Cache memory
• Control ASIC

• Connect to motor

Just like a small
computer – processor,
memory, network iface

11 15-213, F’09

Disk “Geometry”
Disks contain Disks contain plattersplatters, each with two , each with two surfacessurfaces

Each surface organized in concentric rings called Each surface organized in concentric rings called trackstracks

Each track consists of Each track consists of sectorssectors separated by separated by gapsgaps

spindle

surface
tracks

track k

sectors

gaps

12 15-213, F’09

Disk Geometry (Muliple-Platter View)
Aligned tracks form a cylinderAligned tracks form a cylinder

surface 0
surface 1
surface 2
surface 3
surface 4
surface 5

cylinder k

spindle

platter 0

platter 1

platter 2

13 15-213, F’09

Disk Structure

Read/Write Head

Upper Surface
Platter

Lower Surface

Cylinder

Track

Sector

Arm

Actuator

14 15-213, F’09

Disk Operation (Multi-Platter View)

arm

read/write heads
move in unison

from cylinder to cylinder

spindle

15 15-213, F’09

Tracks divided into sectors

Disk Structure - top view of
single platter

Surface organized into tracks

16 15-213, F’09

Disk Access

Head in position above a track

17 15-213, F’09

Disk Access

Rotation is counter-clockwise

18 15-213, F’09

Disk Access – Read

About to read blue sector

19 15-213, F’09

Disk Access – Read

After BLUE read

After reading blue sector

20 15-213, F’09

Disk Access – Read

After BLUE read

Red request scheduled next

21 15-213, F’09

Disk Access – Seek

After BLUE read Seek for RED

Seek to red’s track

22 15-213, F’09

Disk Access – Rotational
Latency

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around

23 15-213, F’09

Disk Access – Read

After BLUE read Seek for RED Rotational latency After RED read

Complete read of red

24 15-213, F’09

Disk Access – Service Time
Components

After BLUE read Seek for RED Rotational latency After RED read

Seek
Rotational Latency
Data Transfer

25 15-213, F’09

Disk Access Time
Average time to access a specific sector approximated by:Average time to access a specific sector approximated by:

� Taccess = Tavg seek + Tavg rotation + Tavg transfer

Seek timeSeek time (Tavg seek)(Tavg seek)
� Time to position heads over cylinder containing target sector
� Typical Tavg seek = 3-5 ms

Rotational latencyRotational latency (Tavg rotation)(Tavg rotation)
� Time waiting for first bit of target sector to pass under r/w head
� Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

� e.g., 3ms for 10,000 RPM disk

Transfer timeTransfer time (Tavg transfer)(Tavg transfer)
� Time to read the bits in the target sector
� Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

� e.g., 0.006ms for 10,000 RPM disk with 1,000 sectors/track
� given 512-byte sectors, ~85 MB/s data transfer rate

26 15-213, F’09

Disk Access Time Example
Given:Given:

� Rotational rate = 7,200 RPM
� Average seek time = 5 ms
� Avg # sectors/track = 1000

Derived average time to access random sector:Derived average time to access random sector:
� Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
� Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec =

0.008 ms
� Taccess = 5 ms + 4 ms + 0.008 ms = 9.008 ms

� Time to second sector: 0.008 ms

Important points:Important points:
� Access time dominated by seek time and rotational latency
� First bit in a sector is the most expensive, the rest are “free”
� SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

� ~100,000 times longer to access a word on disk than in DRAM

27 15-213, F’09

Performance and page faults
�� First: how often do they happen?First: how often do they happen?

� depends! (on workloads and memory sizes)
� in most systems, very rare
� scenario: random access to 4GB of VM with 2GB real memory

� 50% of memory access will generate page faults

�� Second: how long do they take?Second: how long do they take?
� usually, one disk access

� lets say 10ms, for our scenario

�� So, how fast does the program go in the scenario?So, how fast does the program go in the scenario?
� 100 pageFaults/second * 2 memoryAccesses/pageFault
� 200 memory accesses per second

28 15-213, F’09

Disk storage as array of blocks

OS’s view of storage device
(as exposed by SCSI or IDE/ATA protocols)

�� Common Common ““logical blocklogical block”” size: 512 bytessize: 512 bytes

�� Number of blocks: device capacity / block sizeNumber of blocks: device capacity / block size

�� Common OSCommon OS--toto--storage requests defined by few fieldsstorage requests defined by few fields
� R/W, block #, # of blocks, memory source/dest

65 7 12 23 ……

29 15-213, F’09

Reminder: Page Faults
A A page faultpage fault is caused by a reference to a VM word that is not in is caused by a reference to a VM word that is not in
physical (main) memoryphysical (main) memory
� Example: An instruction references a word contained in VP 3, a miss

that triggers a page fault exception

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

From lecture-14.ppt

“logical block” number can be
remembered in page table to

identify disk location for pages
not resident in main memory

30 15-213, F’09

In device, “blocks” mapped to physical store

Disk Sector
(usually same size as block)

31 15-213, F’09

Physical sectors of a single-
surface disk

32 15-213, F’09

LBN-to-physical for a single-
surface disk

10

9

8

7

6

54

3

2

1

0
12

13

11

22

18

16 17

19

20

21
24

15

14

23

28 29
30

31

33

32

34

25

26

27

35

41
42

43

44

46
4536

37
38

40
39

4
7

33 15-213, F’09

Mapping file offsets to disk LBNs
�� Issue in questionIssue in question

� need to keep track of which LBNs hold which file data

�� Most trivial mapping: just remember start locationMost trivial mapping: just remember start location
� then keep entire file in contiguous LBNs

� what happens when it grows?
� alternately, include a “next pointer” in each “block”

� how does one find location of a particular offset?

�� Most common approach: block listsMost common approach: block lists
� an array with one LBN per block in the file
� Note: file block size can exceed one logical (disk) block

� so, groups of logical blocks get treated as a unit by file system
� e.g., 8KB = 16 disk blocks (of 512 bytes each)

34 15-213, F’09

Direct Block 1

Indirect Block

Double-Indirect
Block Indirect Block 1

. . .

Direct Block 2
Data (lbn 344)

Data (lbn 576)

Direct Block 12
Data (lbn 968)

. . .

(lbn 632)
Data Block 13

Data

(lbn 1944)

(lbn 480)

Data Block 14

Data Block N
. . . Data

Data

(lbn 72). . .

Indirect Block 2
Data Block Q+1

Data

(lbn 96)
Data Block N+1

Data

(lbn 176)

Data Block N+2
. . . Data

A common approach to recording a block list

35 15-213, F’09

Reminder: How the Unix Kernel
Represents Open Files

�� Two descriptors referencing two distinct open disk Two descriptors referencing two distinct open disk
files. Descriptor 1 (files. Descriptor 1 (stdoutstdout) points to terminal, and) points to terminal, and
descriptor 4 points to open disk filedescriptor 4 points to open disk file

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

From lecture-13.ppt

36 15-213, F’09

Disk Capacity

Capacity:Capacity: maximum number of bits that can be storedmaximum number of bits that can be stored
� Vendors express capacity in units of gigabytes (GB), where

1 GB = 109 Bytes (Lawsuit pending! Claims deceptive advertising)

Capacity is determined by these technology factors:Capacity is determined by these technology factors:
� Recording density (bits/in): number of bits that can be squeezed

into a 1 inch linear segment of a track
� Track density (tracks/in): number of tracks that can be squeezed

into a 1 inch radial segment
� Areal density (bits/in2): product of recording and track density

37 15-213, F’09

Computing Disk Capacity
Capacity = Capacity = (# bytes/sector) x (avg. # sectors/track) x(# bytes/sector) x (avg. # sectors/track) x

(# tracks/surface) x (# surfaces/platter) x(# tracks/surface) x (# surfaces/platter) x

(# platters/disk)(# platters/disk)

Example:Example:
� 512 bytes/sector
� 1000 sectors/track (on average)
� 20,000 tracks/surface
� 2 surfaces/platter
� 5 platters/disk

Capacity = 512 x 1000 x 80000 x 2 x 5Capacity = 512 x 1000 x 80000 x 2 x 5

= 409,600,000,000= 409,600,000,000

= 409.6 GB = 409.6 GB

38 15-213, F’09

Looking back at the hardware

main
memorybus interface

ALU

register file

CPU chip

39 15-213, F’09

Connecting I/O devices: the I/O Bus

main
memory

I/O
bridgebus interface

ALU

register file

CPU chip

system bus memory bus

USB
controller

mousekeyboard

graphics
adapter

monitor

disk
controller

disk

I/O bus Expansion slots for
other devices such
as network adapters

40 15-213, F’09

Reading from disk (1)

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a READ
command, logical block number, number of
blocks, and destination memory address to a
port (address) associated with disk controller

41 15-213, F’09

Reading from disk (2)

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

Disk controller reads the sectors and
performs a direct memory access (DMA)
transfer into main memory

42 15-213, F’09

Reading from disk (3)

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

