
Virtual Memory
October 15, 2009

Topics
Address spaces
Motivations for virtual memory
Address translation
Accelerating translation with TLBs

lecture-14.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, F’09

Programs Refer to Virtual Memory AddressesPrograms Refer to Virtual Memory Addresses
Conceptually very large array of bytes
Actually implemented with hierarchy of different memory types
System provides address space private to particular “process”

Program being executed
Program can clobber its own data, but not that of others

Compiler + RunCompiler + Run--Time System Control AllocationTime System Control Allocation
Where different program objects should be stored
All allocation within single virtual address space

Byte-Oriented Memory
Organization

• • •
00
••
•0

FF
••
•F

From class02.ppt

3 15-213, F’09

Simple Addressing
Modes

NormalNormal (R)(R) Mem[Reg[RMem[Reg[R]]]]
Register R specifies memory address

movl (%ecx),%eax

DisplacementDisplacement D(R)D(R) Mem[Reg[R]+DMem[Reg[R]+D]]
Register R specifies start of memory region
Constant displacement D specifies offset

movl 8(%ebp),%edx

From class04.ppt

4 15-213, F’09

How does everything fit?How does everything fit?
32-bit addresses: ~4,000,000,000 (4 billion) bytes
64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

How to decide which memory to use in your program?How to decide which memory to use in your program?
How about after a fork()?

What if another process stores data into your memory?What if another process stores data into your memory?
How could you debug your program?

Lets think on this: physical
memory?

• • •
00
••
•0

FF
••
•F

5 15-213, F’09

So, we add a level of indirection
One simple trick solves all three problemsOne simple trick solves all three problems

Each process gets its own private image of memory
appears to be a full-sized private memory range

This fixes “how to choose” and “others shouldn’t mess w/yours”
surprisingly, it also fixes “making everything fit”

Implementation: translate addresses transparently
add a mapping function

to map private addresses to physical addresses
do the mapping on every load or store

This mapping trick is the heart of This mapping trick is the heart of virtual memoryvirtual memory

6 15-213, F’09

Address Spaces
A A linear address space linear address space is an ordered set of contiguous is an ordered set of contiguous
nonnegative integer addresses:nonnegative integer addresses:

{0, 1, 2, 3, {0, 1, 2, 3, …… }}

A A virtual address spacevirtual address space is a set of N = 2is a set of N = 2nn virtual addressesvirtual addresses::

{0, 1, 2, {0, 1, 2, ……, N, N--1}1}

A A physical address spacephysical address space is a set of M = 2is a set of M = 2mm (for convenience) (for convenience)
physical addressesphysical addresses::

{0, 1, 2, {0, 1, 2, ……, M, M--1}1}

In a system based on virtual addressing, each byte of main In a system based on virtual addressing, each byte of main
memory has a physical address memory has a physical address andand a virtual address (or more)a virtual address (or more)

7 15-213, F’09

A System Using Physical Addressing

Used by many embedded microcontrollers in devices Used by many embedded microcontrollers in devices
like cars, elevators, and digital picture frameslike cars, elevators, and digital picture frames

0:
1:

M -1:

Main memory

CPU
2:
3:
4:
5:
6:
7:

Physical
address

(PA)

4

Data word

8: ...

8 15-213, F’09

A System Using Virtual Addressing

One of the great ideas in computer scienceOne of the great ideas in computer science
used by all modern desktop and laptop microprocessors

...
0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Virtual
address

(VA)

4100

Data word

Physical
address

(PA)

4

CPU chip

MMU

Address
translation

9 15-213, F’09

Why Virtual Memory?
(1) VM allows efficient use of limited main memory (RAM)

Use RAM as a cache for the parts of a virtual address space
some non-cached parts stored on disk
some (unallocated) non-cached parts stored nowhere

Keep only active areas of virtual address space in memory
transfer data back and forth as needed

(2) VM simplifies memory management for programmers
Each process gets a full, private linear address space

(3) VM isolates address spaces
One process can’t interfere with another’s memory

because they operate in different address spaces
User process cannot access privileged information

different sections of address spaces have different permissions

10 15-213, F’09

(1) VM as a Tool for Caching
Virtual memory Virtual memory is an array of N contiguous bytesis an array of N contiguous bytes

think of the array as being stored on disk

The contents of the array on disk are cached in The contents of the array on disk are cached in
physical memory (DRAM cache)physical memory (DRAM cache)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached

Uncached
Unallocated

Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

11 15-213, F’09

DRAM Cache Organization
DRAM cache organization driven by the enormous DRAM cache organization driven by the enormous
miss penaltymiss penalty

DRAM is about 10x slower than SRAM
Disk is about 100,000x slower than a DRAM

to get first byte, though fast for next byte

DRAM cache propertiesDRAM cache properties
Large page (block) size (typically 4-8 KB)
Fully associative

Any virtual page can be placed in any physical page
Requires a “large” mapping function – different from CPU caches

Highly sophisticated replacement algorithms
Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through

12 15-213, F’09

Reminder: using virtual addressing

One of the great ideas in computer scienceOne of the great ideas in computer science
used by all modern desktop and laptop microprocessors

MMU

Physical
address

(PA)

...
0:
1:

M-1:

Main memory

Virtual
address

(VA)
CPU

2:
3:
4:
5:
6:
7:

4100

Data word

4

CPU chip

Address
translation

13 15-213, F’09

How? Page Tables
A A page table page table is an array of page table entries (PTEs) is an array of page table entries (PTEs)
that maps virtual pages to physical pagesthat maps virtual pages to physical pages

Per-process kernel data structure in DRAM

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

14 15-213, F’09

Address Translation with a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

VIRTUAL ADDRESS

Physical page number (PPN)

PHYSICAL ADDRESS

0p–1pm–1

n–1 0p–1pPage table
base register

(PTBR)

If valid=0
then page
not in memory
(page fault)

Valid Physical page number (PPN)

The VPN acts
as index into
the page table

Page
table

Physical page offset (PPO)

15 15-213, F’09

Page Hits
A A page hitpage hit is a reference to a VM word that is in is a reference to a VM word that is in
physical (main) memoryphysical (main) memory

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

16 15-213, F’09

Page Faults
A A page faultpage fault is caused by a reference to a VM word that is not in is caused by a reference to a VM word that is not in
physical (main) memoryphysical (main) memory

Example: An instruction references a word contained in VP 3, a miss
that triggers a page fault exception

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

17 15-213, F’09

Handling a Page Fault

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

The kernel’s page fault handler selects VP 4 as the victim and
replaces it with a copy of VP 3 from disk (demand paging)

When the offending instruction restarts, it executes normally, without
generating an exception

..

18 15-213, F’09

Why does it work? Locality
Virtual memory works because of localityVirtual memory works because of locality

At any point in time, programs tend to access a set of At any point in time, programs tend to access a set of
active virtual pages called the active virtual pages called the working setworking set

Programs with better temporal locality will have smaller
working sets

If (working set size < main memory size) If (working set size < main memory size)
Good performance for one process after compulsory misses

If (If (SUM(workingSUM(working set sizes) > main memory size) set sizes) > main memory size)
Thrashing: Performance meltdown where pages are swapped
(copied) in and out continuously

19 15-213, F’09

(2) VM as a Tool for Memory Mgmt
Key idea: each process has its own virtual address space

It can view memory as a simple linear array
Mapping function scatters addresses through physical memory

Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read-only
library code)

...

...

Virtual
Address
Space for
Process 2:

20 15-213, F’09

Simplifying Sharing and Allocation
Memory allocation

Each virtual page can be mapped to any physical page
A virtual page can be stored in different physical pages at different
times – the program never knows

Sharing code and data among processes
Map virtual pages to the same physical page (PP 7)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read-only
library code)

...

...

Virtual
Address
Space for
Process 2:

21 15-213, F’09

IA32 Linux Memory
LayoutStackStack

Runtime stack (8MB limit)

HeapHeap
Dynamically allocated storage
When call malloc(), calloc(), new()

DataData
Statically allocated data
E.g., arrays & strings declared in code

TextText
Executable machine instructions
Read-only

Upper
2 hex
digits of
address

FF

00

Stack

Text
Data
Heap

08
From class08.ppt

22 15-213, F’09

Simplifying Linking and Loading
Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created at runtime by malloc)

User stack
(created at runtime)

Unused0

%esp (stack ptr)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from
executable file

Linking
Each program has similar
virtual address space
Code, stack, and shared
libraries always start at the
same address

Loading
execve() maps PTEs to the
appropriate location in the
executable binary file
The .text and .data
sections are copied, page by
page, on demand by the
virtual memory system.

23 15-213, F’09

(3)VM as a Tool for Memory Protection
Extend PTEs with permission bitsExtend PTEs with permission bits
Page fault handler checks these before remappingPage fault handler checks these before remapping

If violated, send process SIGSEGV (segmentation fault)
Page tables with permission bits

Process i:

AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•••

Process j:

PP 0

Physical memory

Yes

•••

PP 4

PP 6

PP 9

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes
PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

PP 2

PP 11

24 15-213, F’09

Reminder: using virtual addressing

One of the great ideas in computer scienceOne of the great ideas in computer science
used by all modern desktop and laptop microprocessors

MMU

Physical
address

(PA)

...
0:
1:

M-1:

Main memory

Virtual
address

(VA)
CPU

2:
3:
4:
5:
6:
7:

4100

Data word

4

CPU chip

Address
translation

25 15-213, F’09

Address Translation: Page Hit

1) Processor sends virtual address to MMU 1) Processor sends virtual address to MMU

22--3) MMU fetches PTE from page table in memory3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor5) Cache/memory sends data word to processor

VA

1
Processor MMU Cache/

memory

PTEA

PTE

PA

Data

2

3

4

5

CPU chip

26 15-213, F’09

Address Translation: Page Fault

1) Processor sends virtual address to MMU 1) Processor sends virtual address to MMU
22--3) MMU fetches PTE from page table in memory3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to dis5) Handler identifies victim (and, if dirty, pages it out to disk)k)
6) Handler pages in new page and updates PTE in memory6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting inst7) Handler returns to original process, restarting faulting instructionruction

Page fault exception handler
Exception

VA

1
Processor MMU Cache/

memory

4

5

CPU chip

Disk

Victim page

New page

6

7

PTEA

PTE

2

3

27 15-213, F’09

Speeding up Translation with a TLB
Page table entries (PTEs) are cached in L1 like any other
memory word

PTEs may be evicted by other data references
PTE hit still requires a 1-cycle delay

Solution: Solution: Translation Lookaside Buffer (TLB)
Small hardware cache in MMU
Maps virtual page numbers to physical page numbers
Contains complete page table entries for small number of pages

28 15-213, F’09

TLB Hit

A TLB hit eliminates a memory accessA TLB hit eliminates a memory access

VAProcessor Trans-
lation

Cache/
memoryPA

Data

CPU chip

TLB

VPN PTE

1

2 3

4

5

29 15-213, F’09

TLB Miss

A TLB miss incurs an A TLB miss incurs an addadd’’ll memory access (the PTE)memory access (the PTE)
Fortunately, TLB misses are rare

VAProcessor Trans-
lation

Cache/
memory

PTEA

Data

CPU chip

TLB

VPN PTE

PA

1

2

3

4

5

6

30 15-213, F’09

Simple Memory System
Example

Addressing
14-bit virtual addresses
12-bit physical address
Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

31 15-213, F’09

Simple Memory System Page Table
Only show first 16 entries (out of 256)

10D0F0–07
1110E0–06
12D0D11605
0–0C0–04
0–0B10203
1090A13302
117090–01
1130812800

ValidPPNVPNValidPPNVPN

32 15-213, F’09

Simple Memory System TLB
TLB

16 entries
4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

33 15-213, F’09

Address Translation Example
#1

Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 3 0x03 Y NO 0x0D

34 15-213, F’09

Summary
Programmer’s View of Virtual Memory

Each process has its own private linear address space
Cannot be corrupted by other processes

System View of Virtual Memory
Uses memory efficiently by caching virtual memory pages

Efficient only because of locality
Simplifies memory management and programming
Simplifies protection by providing a convenient
interpositioning point to check permissions

35 15-213, F’09

Address Translation Example
#2

Virtual Address 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11110001110100

0x2E 2 0x0B NO YES TBD

36 15-213, F’09

Address Translation Example
#3

Virtual Address 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00000100000000

0x00 0 0x00 NO NO 0x28

37 15-213, F’09

Summary
Programmer’s View of Virtual Memory

Each process has its own private linear address space
Cannot be corrupted by other processes

System View of Virtual Memory
Uses memory efficiently by caching virtual memory pages

Efficient only because of locality
Simplifies memory management and programming
Simplifies protection by providing a convenient
interpositioning point to check permissions

38 15-213, F’09

Simple Memory System Cache
Cache

16 lines
4-byte line size
Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––014F03DFC2111167
D31B7783113E––––0316
15349604116D1DF0723610D5

––––012C098F6D431324
––––00BB––––0363

3BDA159312DA0804020011B2
––––02D9––––0151

8951003A1248112311991190
B3B2B1B0ValidTagIdxB3B2B1B0ValidTagIdx

39 15-213, F’09

Address Translation Example
#1

Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 3 0x03 Y NO 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

40 15-213, F’09

Address Translation Example
#2

Virtual Address 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100

0x2E 2 0x0B NO YES TBD

41 15-213, F’09

Address Translation Example
#3

Virtual Address 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 NO NO 0x28

0000000 00111

0 0x8 0x28 NO MEM

42 15-213, F’09

Allocating Virtual Pages
Example: Allocating new virtual page VP5Example: Allocating new virtual page VP5

Kernel allocates VP 5 on disk and points PTE 5 to it

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

43 15-213, F’09

Multi-Level Page Tables
Given:

4KB (212) page size
48-bit address space
4-byte PTE

Problem:
Would need a 256 GB page table!

248 * 2-12 * 22 = 238 bytes

Common solution
Multi-level page tables
Example: 2-level page table

Level 1 table: each PTE points to a page table
(memory resident)
Level 2 table: Each PTE points to a page (paged
in and out like other data)

Level 1 table stays in memory
Level 2 tables paged in and out

Level 1
Table

...

Level 2
Tables

...

44 15-213, F’09

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

45 15-213, F’09

Translating with a k-level Page
Table

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...
Level 1

page table
Level 2

page table
Level k

page table

46 15-213, F’09

Servicing a Page Fault
(1) Processor signals disk
controller

Read block of length P starting
at disk address X and store
starting at memory address Y

(2) Read occurs
Direct Memory Access (DMA)
Under control of I/O controller

(3) Controller signals
completion

Interrupts processor
OS resumes suspended process diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller
I/O

controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

