Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, Fall 2009
12t Lecture

Instructors:
Greg Ganger and Roger Dannenberg

ECF Exists at All Levels of a System

m Exceptions

= Hardware and operating system kernel
software

m Signals
= Kernel software
m Non-local jumps
= Application code

Previous Lecture

This Lecture

Carnegie Mellon

The World of Multitasking

m System runs many processes concurrently

m Process: executing program
= State includes memory image + register values + program counter

m Regularly switches from one process to another
= Suspend process when it needs 1/0 resource or timer event occurs
= Resume process when I/0 available or given scheduling priority

m Appears to user(s) as if all processes executing simultaneously
= Even though most systems can only execute one process at a time
= Except possibly with lower performance than if running alone

Announcements

= Final exam day/time announced (by CMU)
= 5:30-8:30pm on Monday, December 14

m Cheating... please, please don’t
= Writing code together counts as “sharing code” — forbidden

“Pair programming”, even w/o looking at other’s code — forbidden
= describing code line by line counts the same as sharing code

Opening up code and then leaving it for someone to enjoy — forbidden
= in fact, please remember to use protected directories and screen locking
Talking through a problem can include pictures (not code) — ok

The automated tools for discovering cheating are incredibly good
= .. please don’t test them
Everyone has been warned multiple times

= cheating on the remaining labs will receive no mercy

Today

m Multitasking, shells
m Signals
m Long jumps

Carnegie Mellon

Programmer’s Model of Multitasking

m Basic functions
= fork() spawns new process
= Called once, returns twice
= exit() terminates own process
= Called once, never returns
= Puts it into “zombie” status
= wait() and waitpid() wait for and reap terminated children
= execl () and execve() run new program in existing process
= Called once, (normally) never returns

m Programming challenge
= Understanding the nonstandard semantics of the functions
= Avoiding improper use of system resources
= E.g. “Fork bombs” can disable a system

Carnegie Mellon

Shell Programs

m Ashell is an application program that runs programs on
behalf of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

= csh BSD Unix C shell (Ecsh: csh enhanced at CMU and elsewhere)

= bash ““Bourne-Again” Shell

int mainQ Execution is a sequence of
read/evaluate steps

char cmdline[MAXLINE];

while (1) {
/* read */
printf('> ");
Fgets(cmdline, MAXLINE,
stdin);
if (feof(stdin))
exit(0);

/* evaluate */
eval(cmdline);

What Is a “Background Job”?

m Users generally run one command at a time
= Type command, read output, type another command

Some programs run “for a long time”
= Example: “delete this file in two hours”
% sleep 7200; rm /tmp/junk # shell stuck for 2 hours

m A “background” job is a process we don't want to wait for
% (sleep 7200 ; rm /tmp/junk) &
[1] 907
% # ready for next command

ECF to the Rescue!

m Problem

The shell doesn't know when a background job will finish
By nature, it could happen at any time

The shell's regular control flow can't reap exited background processes in
a timely fashion

Regular control flow is “wait until running job completes, then reap it”

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

= In Unix, the alert mechanism is called a signal

Carnegie Mellon

Simple Shell eval Function

void eval(char *cmdline)

char *argv[MAXARGS]; /* argv for execve() */

int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);

it (tbuiltin_command(argv)) {

if ((pid = fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);
b
3

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error™);

else /* otherwise, don’t wait for bg job */
printf("%d %s™, pid, cmdline);

Carnegie Mellon

Problem with Simple Shell Example

m Shell correctly waits for and reaps foreground jobs

m But what about background jobs?

Will become zombies when they terminate

Will never be reaped because shell (typically) will not terminate

Will create a memory leak that could theoretically run the kernel out of
memory

Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork() returns -1
% Blimit maxproc # csh syntax
maxproc 3574
$ ulimit -u
3574

bash syntax

Signals

m A ssignal is a small message that notifies a process that an
event of some type has occurred in the system
akin to exceptions and interrupts

sent from the kernel (sometimes at the request of another process) to a
process

signal type is identified by small integer IDs (1-30)
only information in a signal is its ID and the fact that it arrived

ID Name Default Action
2 SIGINT Terminate

SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore

Corresponding Event
Interrupt (e.g., ctl-c from keyboard)

B ©

~

Child stopped or terminated

Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)
= Another process has invoked the ki Il system call to explicitly request
the kernel to send a signal to the destination process

Carnegie Mellon

Signal Concepts (continued)

m A signal is pending if sent but not yet received
= There can be at most one pending signal of any particular type
® |mportant: Signals are not queued

= If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

= A pending signal is received at most once

Carnegie Mellon

Process Groups

m Every process belongs to exactly one process group

pid=20

poid=20 pid=40

pgid=40

Background Background
process group 32 process group 40

pid=22 getpgrp)
pgid=20 Return process group of current process

Foreground setpgid()
process|group 20 Change process group of a process

Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Three possible ways to react:
= Ignore the signal (do nothing)
= Terminate the process (with optional core dump)
® Catch the signal by executing a user-level function called signal handler
= Akin to a hardware exception handler being called in response to an
asynchronous interrupt

Carnegie Mellon

Signal Concepts (continued)

= Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

= blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask function

Sending Signals with ki I | Program

= kill program sends
arbitrary signal to a linux> ./forks 16

linux> Childl: pid=24818 pgrp=24817
process or process group Child2: pid=24819 pgrp=24817

linux> ps
u Examples PID TTY TIME CMD
= Kill —9 24818 24788 pts/2 00:00:00 tcsh

Send SIGKILL to process 24818 24810 pts/2 00-00-02 Forks |

24820 pts/2 00:00:00 ps

24818 pts/2 00:00:02 forks

. Kill -9 —24817 ux> Kill -9 -24817
. linux> ps
Send SIGKILL to every process in PID TTY TIME CMD
process group 24817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

Sending Signals with ki 1 I Function

void forkl2()
{

pid_t pid[N]:
int i, child _status;
for (i < N; i++)

((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i i< N; i) {
pi Killing process %d\n", pid[i]);:
Kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i i< N; i) {
|_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

= If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else

Choose least nonzero bit k in pnb and force process p to receive
signal k

The receipt of the signal triggers some action by p
Repeat for all nonzero k in pnb
Pass control to next instruction in logical flow for p

Carnegie Mellon

Installing Signal Handlers

= The signal function modifies the default action associated
with the receipt of signal signum:
= handler_t *signal(int signum, handler_t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a signal handler

Called when process receives signal of type signum

Referred to as “installing” the handler

Executing handler is called “catching” or “handling” the signal

When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Carnegie Mellon

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
foreground process group
= SIGINT — default action is to terminate each process
= SIGTSTP — default action is to stop (suspend) each process

pid=20 ide
pgic=20 pid=40

pgid=40

Background Background
process group 32 process group 40

Foreground
process group 20

Carnegie Mellon

Default Actions

m Each signal type has a predefined default action, which is
one of:
= The process terminates
= The process terminates and dumps core
= The process stops until restarted by a SIGCONT signal
= The process ignores the signal

Carnegie Mellon

Signal Handling Example

void int_handler(int sig)

printf(“Process %d received signal %d\n",
getpid(), sig);
exit(0);

void fork13(Q)
{ inux> ./forks 13
pid_t pid[N]; ing process 24973
't i, child_status; / process 24974
signal (SIGINT, int_handler); process 24975
process 24976
process 24977
24977 received signal 2
Chilld 24977 terminated with exit status 0
Process 24976 recei signal 2
Chilld 24976 termi with exit status 0
i signal 2
with exit status 0
signal 2

ARRXAR =

User: Ctrl-C (once)

Process 24974 re
Chilld 24974 termi with exit status 0
Process 24973 rec signal 2

Chilld 24973 terminated with exit status 0
Finux>

Signals Handlers as Concurrent Flows
m A signal handler is a separate logical flow (not process) that

runs concurrently with the main program
= “concurrently” in the “not sequential” sense

Process A Process A Process B
while (1) handlerO{
| 3

Time |

Today

m Multitasking, shells
m Signals
= Long jumps

setjmp/longjmp (cont)

= void longjmp(@mp_buf j, int i)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning 1 instead of 0
= Called after setjmp
= Called once, but never returns

= longjmp Implementation:
= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j
= Set%eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

1
Process A Process B

Signal delivered —> 1 user code (main)

1
1
1
1
curr !
1

kernel code context switch

user code (main)

kernel code } context switch

Signal received —>
user code (handler)

kernel code
[}

next user code (main)

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
= Controlled way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m Int setjmp(@mp_buf j)
= Must be called before longjmp
= lIdentifies a return site for a subsequent longjmp
= Called once, returns one or more times

= Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf

= ReturnO

setjmp/longjmp Example

#include <setjmp.h>
Jmp_buf buf;

mainQ) {
if (setjmp(buf) = 0) {
printf('back in main due to an error\n™);
else
printf('first time through\n™);
p1Q; /* pl calls p2, which calls p3 */

P30 {
<error checking code>
if (error)
longjmp(buf, 1)

Carnegie Mellon

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called

but not yet completed
v P Before longjmp After longjmp

Jmp_buf env; env |
woreef P pP1
P10
{
if (setimpenv)) { P2
/* Long Jump to here */
else
& 2
b
3 P2
P20
{ ---P20; - - - P30O; } P3
P3O
{
longjmp(env, 1);

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctri-c’d

#include <stdio.h> bass> a.out
#include <signal.h> starting
#include <setjmp.h> processing. .
processing. ..
sigjmp_buf buf; restarting <+ ——Ctrlc
void handler(int sig) { S:ggz:i:zg' -
igl j buf, 1); S -
siglongjmp(bu D) restarting +—Ctrl-c
processing.. .

main(Q) {
signal (SIGINT, handler);

if (Isigsetjmp(buf, 1))
printf(starting\n');
else
printf(restarting\n);

while(1) {
sleep(1);
printf(“processing...\n");

Carnegie Mellon

Example of ctrl-candctrl-z

bluefish> ./forks 17 STAT (process state) Legend:

Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
E:‘Spir_‘dﬁd T: stopped
uefish> ps w . .
PID TTY STAT TIME COMMAND R: running
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 1 ./forks 17 Second letter:
28108 pts/8 T 1 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
-/forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

Carnegie Mellon

Limitations of Long Jumps (cont.)
m Works within stack discipline
= Canonly long jump to environment of function that has been called
but not yet completed
Jmp_buf env; Pl
P10 P2
P20; P30 At setjmp
P20 P1
it (setjmp(env)) { env
/* Long Jump to here */ g P2
} b P2 returns P1
P3
1 © e el P3
longjmp(env, 1);
At longjmp

Carnegie Mellon

Summary

m Signals provide process-level exception handling
= Can generate from user programs
® Can define effect by declaring signal handler
m Some caveats
= Very high overhead
= >10,000 clock cycles
= Only use for exceptional conditions
= Don’t have queues
= Just one bit for each pending signal type
m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline

Carnegie Mellon

Signal Handler Funkiness

int ccount = 0; m Pending signals are not
void child_handler(int sig) queued
{

int child_status; = For each signal type, just

pid_t pid = wait(&child_status); have single bit indicating
R ceived signal %d from process %d\n", whet!wer or not signal is
sig, pid); pending
T
void fork14Q) = Even if multiple processes
have sent this signal
|_t pid[N];

int i, chi

ccount = N;

signal (SIGCHLD, child_handler);

for (i =05 i < i++)

if ((pid[i] = forkQ)) == O]

{
sleep(1); /* deschedule child */
exit(0); /* Child: Exit */

while (ccount > 0)
pause(); /* Suspend until signal occurs */

Living With Nonqueuing Signals

m Must check for all terminated jobs
= Typically loop withwait

void child_handler2(int sig)
{
int child_status;
pid_t pi
while ((| = waitpid(-1, &child_status, WNOHANG)) > 0) {
ccount--;
printf('Received signal %d from process %d\n", sig, pid);

b

void fork15Q)
{

signal (SIGCHLD, child_handler2);

Carnegie Mellon

Carnegie Mellon

Signal Handler Funkiness (Cont.)

m Signal arrival during long system calls (say a read)
m Signal handler interrupts read () call

= Linux: upon return from signal handler, the read () call is restarted
automatically

= Some other flavors of Unix can cause the read() call to fail with an
EINTER error number (errno)

in this case, the application program can restart the slow system call

m Subtle differences like these complicate the writing of
portable code that uses signals

Carnegie Mellon

A Program That Reacts to
Externally Generated Events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
printf("'You think hitting ctrl-c will stop the bomb?\n");
sleep(2);
printf("Well...");
fflush(stdout) ;
sleep(1);
printf("OK\n'");
exit(0);
3

mainQ) {

signal (SIGINT, handler); /* installs ctl-c handler */
while(1) {
3

Carnegie Mellon

A Program That Reacts to Internally
Generated Events

#include <stdio.h> mainQ {
#include <signal.h> signal (SIGALRM, handler);
alarm(1); /* send SIGALRM in

int beeps = 0; 1 second */

/* SIGALRM handler */ while (1) {
void handler(int sig) { /* handler returns here */
printf(BEEP\n"); 3

fflush(stdout); }

if (++beeps < 5)

linux> a.out
alarm(1);

BEEP
EISER BEEP
pr!ntf("BOOM!\n"): BEEP
exit(0); BEEP
} BEEP
+ BOOM!

bass>

