15-213/18-243, Fall 2009

Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, spring 2009
10t Lecture, Oct. 15t

Instructors:
Roger B. Dannenberg and Greg Ganger

Example Matrix Multiplication

Matrix -Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s (giga floating point operations per second)

a5

40 ———
- Best code
30
25

20 0

15

This code is

1 not obviously stupid

s Triple loop S =

0]

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
matrix size

= Standard desktop computer, compiler, using optimization flags
= Both implementations have exactly the same operations count (2n3)

n What is going on?

Carnegie Mellon

Harsh Reality

m There’s more to runtime performance than asymptotic
complexity

m One can easily loose 10x, 100x in runtime or even more

= What matters:
= Constants (100n and 5n is both O(n), but)
= Coding style (unnecessary procedure calls, unrolling, reordering, ...)
= Algorithm structure (locality, instruction level parallelism, ...)
= Data representation (complicated structs or simple arrays)

Today

= Program optimization
Overview

Removing unnecessary procedure calls

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Optimization blocker: Procedure calls

Optimization blocker: Memory aliasing

Out of order processing: Instruction level parallelism

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s

50

*® s

40 " =

. =

* =

" [Multiple threads: 4x (towards end of course)

2

15

-

10

.] (not in this course)

o ! Memory hierarchy and other optimizations: 20x

0 1,000 2,000 3,000 4,000 5000 6,000 7,000 8000 9,000

matrix size
= Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice
m Effect: more instruction level parallelism, better register use,
less L1/L2 cache misses, less TLB misses 4 |

Harsh Reality

= Must optimize at multiple levels:
= Algorithm
= Data representations
= Procedures
= Loops

= Must understand system to optimize performance
= How programs are compiled and executed
= Execution units, memory hierarchy
®= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity and
generality

15-213/18-243, Fall 2009

Carnegie Mellon

Optimizing Compilers

-0

= Use optimization flags, default is no optimization (-00)!
= Good choices for gcc: -02, -03, -march=xxx, -m64
m Try different flags and maybe different compilers

Optimizing Compilers

m Compilers are good at: mapping program to machine
= register allocation
= code selection and ordering (scheduling)
= dead code elimination
= eliminating minor inefficiencies
m Compilers are not good at: improving asymptotic efficiency
= up to programmer to select best overall algorithm
= big-O savings are (often) more important than constant factors
= but constant factors also matter
m Compilers are not good at: overcoming “optimization
blockers”
= potential memory aliasing
= potential procedure side-effects

Today

= Program optimization
= Overview
= Removing unnecessary procedure calls
= Code motion/precomputation

Strength reduction

= Sharing of common subexpressions

= Optimization blocker: Procedure calls

= Optimization blocker: Memory aliasing

= Out of order processing: Instruction level parallelism

Carnegie Mellon

Example

double a[4] [4];
double b[4] [4];
double c[4][4]; # set to zero

/* Multiply 4 x 4 matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
cli*4+j] += a[i*4 + k]*b[k*4 + j];

m Compiled without flags:
~1300 cycles

m Compiled with -O3 -m64 -march=... -fno-tree-vectorize
~150 cycles

m Core 2 Duo, 2.66 GHz

Limitations of Optimizing Compilers

m If in doubt, the compiler is conservative
= Operate under fundamental constraints
= Must not change program behavior under any possible condition

= Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

= Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles
= e.g., data ranges may be more limited than variable types suggest
= Most analysis is performed only within procedures
= Whole-program analysis is too expensive in most cases
= Most analysis is based only on static information

= Compiler has difficulty anticipating run-time inputs

Carnegie Mellon

Example: Data Type for Vectors

/* data structure for vectors */
typedef _5":“1‘:‘:{ len 0 1 len-1
int len;
double *data; [sata L[[eeeeeee]]
} vec;

/* retrieve vector element and store at val */
double get_vec_element(*vec, idx, double *val)
{

if (idx < 0 || idx >= v->len)

return 0;
*val = v->data[idx];
return 1;

15-213/18-243, Fall 2009

Example: Summing Vector Elements Removing Procedure Call
/* sum elements of vector */
/* retrieve vector element and store at val */ double sum_elements(vec *v, double *res)
double get_vec_element(*vec, idx, double *val) {
{ Bound check £ £
if (idx < 0 || idx >= v->len) unnecessary n= vecalzngth(v);
res = 0.0;
return 0; in sum_elements double val;
*val = v->data[idx];
Why?
return 1; for (i = 0; i < n; i++) {
} get_vec_element(v, i, &val);

*res += val;

/* sum elements of vector */ }
double sum_elements(vec *v, double *res) Overhead for every fp +: return res;
[*One fct call b
515 £ . One < /* sum elements of vector */
n = vec_length(v); «One >= double sum elements(vec *v, double *res)
*res = 0.0; ¢ !
double val; *One || X int i;
*One memory variable n = vec_length(v);
for (i = 0; i < n; i++) { access *res = 0.0;
6 5 (e, dy Gl 7 double *data = get_vec_start(v) ;
*res += val; Slowdown: for (i = 0; i < n; i++)
} probably 10x or more *res += datal[i];

return res;

return res;

13 | 14 |
Removing Procedure Calls Today
= Procedure calls can be very expensive = Program optimization
= Bound checking can be very expensive " Overview

m Abstract data types can easily lead to inefficiencies Removing unnecessary procedure calls

= Usually avoided for in superfast numerical library functions

Code motion/precomputation

Strength reduction

Sharing of common subexpressions
= Watch your innermost loop!

Optimization blocker: Procedure calls

Optimization blocker: Memory aliasing

m Get a feel for overhead versus actual computation being Out of order processing: Instruction level parallelism

performed
15 | 16 |
Code Motion Compiler-Generated Code Motion
. . . . void set_row(double *a, double *b, =
= Reduce frequency with which computation is performed long 1, long n) R .
- { & pigflg
= |f it will always produce same result . GIETIEiG S = exiiy
VS P ;"“9(13 0 5 < — for (j = 0; j < n; j++)
- i i or (3 =073 n; j = i1;
Especially moving code out of loop) o iy *rowp++ = b[j];
= Sometimes also called precomputation }
void set row(double *a, double *b, Where are the FP operations?
long i, long n) set_row:
(xorl %r8d, %r8d # 5=0
- cmpq %rcx, $r8 # 3j:n
;ong :_l:_ 0 5 < ns see jge L7 # if >= goto done
or (31 =105 <in g th) movg %rex, trax # n
a[n*i+j] = b[]j]; imulq %rdx, %rax # n*i outside of inner loop
} leag (%zrdi,%rax,8), %rdx # rowp = A + n*i*g
.L5: # loop:
movq (%rsi,r8,8), %rax # t = b[j]
ineq %r8 # J++
movq %rax, (%rdx) # *rowp = t
long j; addq $8, %rdx # rowptt
int ni n*i; cmpq %rex, $r8 # J:n
for (j = 0; j < n; j++) 31 L5 # if < goot loop
a[ni+j] = b[3]; 2) CE8
rep ; ret # return
1 |

15-213/18-243, Fall 2009

Today

= Program optimization
Overview

Removing unnecessary procedure calls

Code motion/precomputation
Strength reduction
Sharing of common subexpressions

Optimization blocker: Procedure calls

Optimization blocker: Memory aliasing

Out of order processing: Instruction level parallelism

Today

= Program optimization
Overview

Removing unnecessary procedure calls

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Optimization blocker: Procedure calls

Optimization blocker: Memory aliasing

Out of order processing: Instruction level parallelism

Today

= Program optimization
Overview

Removing unnecessary procedure calls

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Optimization blocker: Procedure calls

Optimization blocker: Memory aliasing

Out of order processing: Instruction level parallelism

Carnegie Mellon

Strength Reduction

= Replace costly operation with simpler one
= Example: Shift/add instead of multiply or divide
16*x nd x << 4
= Benefits are machine dependent
= Depends on cost of multiply or divide instruction
= On Pentium IV, integer multiply requires 10 CPU cycles
= Example: Recognize sequence of products

for (1 = 0; i < n; i++) int ni = 0;
for (j = 0; j < n; j++) for (i = 0; i < n; i++) {
a[n*i + j] = b[j]; for (j = 0; j < n; j++)
a[ni + j] = b[j];
ni += n;
}

Carnegie Mellon

Share Common Subexpressions

= Reuse portions of expressions

m Compilers often not very sophisticated in exploiting
arithmetic properties

3 mults: i*n, (i-1)*n, (i+1)*n 1 mult: i*n

/* Sum neighbors of i,j */ int inj = i*n + j;

up = val[(i-1)*n + 3 1; up = val[inj - n];

down = val[(i+l)*n + 3 1; down = val[inj + n];

left = vall[i*n + 3-11; left = vall[inj - 1];

right = val[i*n + 34115 right = vall[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;
leaq 1(%rsi), trax # i+l imulq %rcx, %rsi # i*n

leaq -1(%rsi), %r8 # i-1 addq Srdx, srsi # i*n+j
imulq %rex, srsi # i*n movq %rsi, srax # i*n+j
imulq %rcx, %rax # (i+1)*n subq %rcx, srax # i*n+j-n
imulq %rcx, %r8 # (i-1)*n leaq (%rsi,$rex), trex # i*n+j+n
addq %rdx, srsi # i*n+j

addq %rdx, %rax # (i+1)*n+j

addq %rdx, %r8 # (i-1)*n+j

Carnegie Mellon

Optimization Blocker #1: Procedure Calls

= Procedure to convert string to lower case

void lower (char *s)
{
int i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');
}

Extracted from 213 lab submissions, Fall 1998

15-213/18-243, Fall 2009

Performance Why is That?
. . void lower (char *s)
= Time quadruples when double string length {
. int i;
= Quadratic performance for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z'")
s[i] -= ('A' - 'a');
CPU Seconds }
100 m String length is called in every iteration!
10 = And strlenis O(n), so Lower is O(n?)
1
0.1 /* My version of strlen */
- size_t strlen(const char *s)
0.01 {
0.001 size_t length = 0;
0.0001 "™ . while (*s !'= '\0') {
A st++;
I 3 = s ¥ %]] 3 %] length++;
String Length return length;
}
25 | 2 |
Improving Performance Performance
void lower (char *s) = Lower2: Time doubles when double string length
U m Linear performance

for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z2") CPU Seconds

s[i] -= ('A' - 'a');
} 100
10 lowerl ®lower2
void lower (char *s) 1
{
int i; 0.1
int len = strlen(s); 0.01
for (i = 0; i < len; i++) 0.001
if (s[i] >= 'A' && s[i] <= 'Z'") 0.0001
| o bl
0.000001
= Move call to strlen outside of loop 2 3 = 8 3§ % 8 F 3 & 8
s]
= Since result does not change from one iteration to another String Length
= Form of code motion/precomputation
28]
Optimization Blocker: Procedure Calls Today

= Why couldn’t compiler move strlen out of inner loop?
= Program optimization

Overview

= Procedure may have side effects

® Function may not return same value for given arguments
= Could depend on other parts of global state
= Procedure lower could interact with strlen

Removing unnecessary procedure calls

Code motion/precomputation
m Compiler usually treats procedure call as a black box that cannot
be analyzed
= Consequence: conservative in optimizations

Strength reduction

Sharing of common subexpressions

Optimization blocker: Procedure calls

int lencnt = 0;

Optimization blocker: Memory aliasing

= Remedies: size t strlen(const char *s) X R .
. - . - = Out of order processing: Instruction level parallelism
= Inline the function if possible :
size_t length = 0;
= Do your own code motion while (*s !'= '\0') {

s++; length++;
}
lencnt += length;
return length;

15-213/18-243, Fall 2009

Carnegie Mellon

Optimization Blocker: Memory Aliasing

/* Sums rows of n x n matrix a
and stores in vector b */ b
void sum_rowsl(double *a, double *b, long n) {

3 a
i < n; i+) { @
j < n; j++)

37
J
b[i] += a[i*n + j];

0;

sum_rowsl inner loop

.L53:
addsd (%rcx), %xmm0 # FP add
addq $8, %rex
decq srax
movsd %$xmm0, (%rsi,%r8,8) # FP store
jne .L53

= Code updates b[i] (= memory access) on every iteration
= Why couldn’t compiler optimize this away?

Carnegie Mellon

Removing Aliasing

/* Sums rows of n x n matrix a
and stores in vector b */
void sum_rows2(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i+4) {
double val = 0;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = val;

}

sum_rows2 inner loop

.L66:
addsd (%rcx), %xmm0 # FP Add
addq $8, %rex
decq srax
jne .L66

= Scalar replacement:
= Copy array elements that are reused into temporary variables
= Assumes no memory aliasing (otherwise possibly incorrect)

Carnegie Mellon

Optimization Blocker: Memory Aliasing

Memory aliasing: Two different memory references write
to the same location

Easy to have happen in C

= Since allowed to do address arithmetic
= Direct access to storage structures

Hard to analyze = compiler cannot figure it out
" Hence is conservative

] ion: Scalar repl

1t in innermost loop
= Copy memory variables that are reused into local variables
= Basic scheme:

= Load: t1=ali], t2 = b[i+1],

= Compute: t4 =t1 *t2; ...

= Store: a[i] =t12, b[i+1] = t7, ...

Carnegie Mellon

Reason

= If memory is accessed, compiler assumes the possibility of
side effects

= Example:

/* Sums rows of n x n matrix a
and stores in vector b */

void sum_rowsl(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i+4) {

;3 < n; 3
b[i] += a[i*n + j];

Value of B:
{0, 1, 2,
4, 8, 16}, i=0:
o o0 e [EEXTERRC
=1: , 161

i 3, 22
i=2: [3, 22, 224]

double B[3] = A+3;

sum_rowsl(a, B, 3);

Carnegie Mellon

Unaliased Version When Aliasing Happens

/* Sum rows is of n X n matrix a
and store in vector b */
void sum_rows2(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i+4) {
double val = 0;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = val;

Value of B:
{o, i, 2,
13, 8

: , 16]

4, 8, 16}, .

32, 64, 128}; L= 08 . 18
1: . 16]

double B3] = A+3;
sum_rowsl(a, B, 3); i=2: [3, 27, 224]
= Aliasing still creates interference

u Result different than before

Carnegie Mellon

More Difficult Example

= Matrix multiplication: C= A*B + C

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
cli*n+j] += ali*n + k]*b[k*n + j];

= Which array elements are reused?
m All of them! But how to take advantage?

15-213/18-243, Fall 2009

Carnegie Mellon

Step 1: Blocking (Here: 2 x 2)

= Blocking, also called tiling = partial unrolling + loop exchange

= Assumes associativity (= compiler will never do it)

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=2)

for (j = 0; j < n; j+=2)
for (k = 0; k < n; k+=2)
for (il = i; il < i+2; il++)
for (31 = j; J1 < 342; jl++)
for (k1 = k; kl < k+2; kl++)
clil*n+jl] += a[il*n + k1]*b[kl*n + j1];

c a b

= *
] oy [][]

EREEE=
-+

Today

= Program optimization
Overview

Removing unnecessary procedure calls

Code motion/precomputation

Strength reduction

= Sharing of common subexpressions

= Optimization blocker: Procedure calls

= Optimization blocker: Memory aliasing

= Out of order processing: Instruction level parallelism

Carnegie Mellon

Optimization 1: Loop Unrolling

int fact u3a(int n)
{

int i;

int result = 1;

for (i =n; i >= 3; i-=3) {

result = Cycles per element (or per mult)

result * i * (i-1) * (i-2); Machine Nocona Core 2

Lor (; i>0; i--) rfact 15.5 6.0
fact 100 3.0

} fact_u3a 10.0 3.0

= Compute more values per iteration
m Does not help here
= Why? Branch prediction — details later

Carnegie Mellon

Step 2: Unrolling Inner Loops

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=2)
for (j = 0; j < n; j+=2)
for (k = 0; k < n; k+=2)

<body>
}

<body>

cli*n + j] = ali*n + k]*b[k*n + j] + ali*n + k+11*b[(k+1)*n + j]
+ cli*n + 3]

cl(i+l)*n + j] = a[(i+1)*n + k]*b[k*n + j] + a[(i+l)*n + k+1]*b[(k+1)*n + j]
+ c[(i+l)*n + 3]

cli*n + (j+1)] = ali*n + k]*b[k*n + (§+1)] + ali*n + k+11*b[(k+1)*n + (§+1)]
+ cli*n + (3+1)]

cl(i+1)*n + (§+1)] = a[(i+1)*n + k]*b[k*n + (j+1)]
+ al(itl)*n + k+1]*b[(k+1)*n + (3+1)] + c[(i+l)*n + (3+1)]

m Every array elemental..],b[..],c[..] used twice

= Now scalar replacement can be applied

Carnegie Mellon

Example: Compute Factorials

Machi

int rfact(int n) =
{ = Intel Pentium 4 Nocona, 3.2 GHz
if (n <= 1) . .
return 1; = Fish Machines
return n * rfact(n-1); = Intel Core 2, 2.7 GHz
= Compiler Versions

= GCC 3.4.2 (current on Fish machines)

int fact(int n)

int i;

int result = 1; Cycles per element (or per mult)

for (i =n; i > 0; i-0) Machine Nocona Core
result = result * i; rfact 15.5 6.0

return result;
} fact 10.0 3.0

Something changed from Pentium 4 to Core: Details later

Carnegie Mellon

Optimization 2: Multiple Accumulators

int fact u3b(int n)
{
int i;
int result0
int resultl
int result2

for (i =n; i >= 3; i-=3) {
result0 *= i;

Cycles per element (or per mult)

Tesultl *= (i-1); Machine Nocona Core 2
result2 *= (i-2); rfact 55 6.0
}
for (; i > 0; i--) fact 10.0 3.0
resultd *= i; fact_u3a 100 3.0
return result0 * resultl * result2;
} fact_u3b 33 1.0

= That seems to help. Can one get even faster?
m Explanation: instruction level parallelism — details later

15-213/18-243, Fall 2009

Modern CPU Design

Carnegie Mellon

Superscalar Processor

Instruction Control

m Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are
usually scheduled dynamically.

Fetch Address

Control

Retirement
Unit
Register
File

Instruction

Instruction
Decode

Operations

Register Updates Prediction OK?

m Benefit: without programming effort, superscalar

A
{ y ! ! } processor can take advantage of the instruction level
Integer/ § General FP Functional .
@ @ =& Units parallelism that most programs have
v v v v

Operation Results

Addr Addr|

= Most CPUs since about 1998 are superscalar.
m Intel: since Pentium Pro

Data
Cache

Execution

Carnegie Mellon

Carnegie Mellon

Pentium 4 Nocona CPU

= Multiple instructions can execute in parallel

Latency versus Throughput

1 load, with address computation m Last S|Ide‘. latency cycles/issue
1 store, with address computation Integer Multiply 10 1
2 simple integer (one may be branch)
1 complex integer (multiply/divide)
1 FP/SSE3 unit S Step1 Step 2 Step 10
1cycle 1cycle > 1cycle >

1 FP move (does all conversions)

m Some instructions take > 1 cycle, but can be pipelined = Consequence:

Instruction Latency Cycles/Issue = How fast can 10 independent int mults be executed?

Load / Store 5 1

Integer Multiply 10 1 tl = t2*t3; t4 = t5*t6; ..

Integer/Long Divide 36/106 36/106 = How fast can 10 sequentially dependent int mults be executed?
Single/Double FP Multiply 7 2 tl = t2*%t3; td4 = t5*tl; t6 = t7*t4; ..
Single/Double FP Add 5 2

Single/Double FP Divide 32/46 32/46 = Major problem for fast execution: Keep pipelines filled

Carnegie Mellon

Hard Bounds

m Latency and throughput of instructions

Performance in Numerical Computing

= Numerical computing =

= How many cycles at least if
= Function requires n int mults?

= Function requires n float adds?
= Function requires n float ops (adds and mults)?

= Counting only floating point adds and mults
= Higher is better
= Like inverse runtime

machines?
= 3.2 Gflop/s = 3200 Mflop/s. Why?

Instruction Latency Cycles/Issue . . . N .
Load / Store 5 a computing dominated by floating point operations
Integer Multiply 10 1 = Example: Matrix multiplication

Integer/Long Divide 36/106 36/106

Single/Double FP Multiply 7 2

Single/Double FP Add 5 2 = Performance measure:

Single/Double FP Divide 32/46 32/46 Floating point operations per second (flop/s)

= Theoretical scalar (no vector SSE) peak performance on fish

15-213/18-243, Fall 2009

Carnegie Mellon

Nocona vs. Core 2

= Nocona (3.2 GHz) (Saltwater fish machines)

Instruction Latency Cycles/Issue
Load / Store 5 1
Integer Multiply 10 1
Integer/Long Divide 36/106 36/106
Single/Double FP Multiply 7 2
Single/Double FP Add 5 2
Single/Double FP Divide 32/46 32/46

= Core 2 (2.7 GHz) (Recent Intel microprocessors)

Instruction Latency Cycles/Issue
Load / Store 5 1
Integer Multiply 3 1
Integer/Long Divide 18/50 18/50
Single/Double FP Multiply a/5 1
Single/Double FP Add 3 1
Single/Double FP Divide 18/32 18/32

Carnegie Mellon

Translating into Micro-Operations

‘ imulq %$rax, 8 (%rbx,s%rdx,d) ‘

m Goal: Each operation utilizes single functional unit
= Requires: Load, integer arithmetic, store

load 8(%rbx,%$rdx,4)
imulqg %rax, templ
store temp2, 8(%rbx,%rdx, 4)

templ

>
> temp2

= Exact form and format of operations is trade secret

Carnegie Mellon

Dataflow View of Instruction Execution

addq %rax, %$rbx # Il
andq %rbx, %$rdx # I2
mulqg $rcx, %rbx # I3
xorq $rbx, %rdi # I4

= Functional View
= View each write as creating new instance of value
= Operations can be performed as soon as operands available
= No need to execute in original sequence

Instruction Control

Instruction Control

Address

Fetch
Control

Retirement
Unit
Register
File

Instruction

Instruction
Decode

Operations

= Grabs instruction bytes from memory
= Based on current PC + predicted targets for predicted branches
= Hardware dynamically guesses whether branches taken/not taken and
(possibly) branch target
= Translates instructions into micro-operations (for CISC style CPUs)
= Micro-op = primitive step required to perform instruction
= Typical instruction requires 1-3 operations
= Converts register references into tags

= Abstract identifier linking destination of one operation with sources of later
operations

Carnegie Mellon

Traditional View of Instruction Execution

addq %rax, %$rbx # Il
andq %rbx, %$rdx # I2
mulqg $rcx, %rbx # I3
xorq $rbx, %rdi # I4

= Imperative View
= Registers are fixed storage locations
= Individual instructions read & write them

= Instructions must be executed in specified sequence to guarantee
proper program behavior

Example Computation

void combine4 (vec_ptr v, data t *dest)

int i;

int length = vec_length(v);

data_t *d = get _vec_start(v);

data_t t = IDENT;

for (i = 0; i < length; i++)
t =t OP d[i];

*dest = t;

}

d[1] OP d[2] OP d[3] OP .. OP d[length-1]

= Data Types = Operations

= Use different declarations for = Use different definitions of OP
data_t and IDENT
= int =+/0
= float = x [1
® double
[54 |

15-213/18-243, Fall 2009

Cycles Per Element (CPE) x86-64 Compilation of Combine4
= Convenient way to express performance of program that operators on vectors or N "
lists void combined (vec_ptr v,
data_t *dest)
m Llength=n {
= Inour case: CPE = cycles per OP (gives hard lower bound) ::: ie’ngth = vec_length(v);
= T=CPE*n +Overhead data_t *d = get_vec_start)5 Cycles per element (or per OP)
data_t t = IDENT; Method Int (add/mult) Float (add/mult)
for (i = 0; i < length; i++)
t =t OPd[il; combine4 2.2 10.0 5.0 7.0
1000 *dest = t;
900 } bound 1.0 1.0 2.0 2.0
-
0 vsuml: Slope=4.0 "
w00 o = Inner Loop (Case: Integer Multiply)
3 Cal
0 vsum2: Slope =3.5 133: ¥ Loop:
. Z movl (%eax,%edx,d), Sebx # temp = d[i]
Pl incl $edx # it
100 imull %ebx, %ecx # x *= temp
o cmpl %esi, %edx # i:length
o s Too0 150 200 j1 133 # if < goto Loop
= Number of elements
B 56 |
. - . . I o
Combine4 = Serial Computation (OP = *) Loop Unrolling

= Computation (length=8)

14 void unroll2a combine (vec ptr v, data_t *dest)
0 CCeeeee@ * dro1) * d[1]) * dr21) * d[31) {
* d[4]) * d[5]) * d[6]) * d[7]) int length = vec length(v);
= Sequential dependence! Hence, Y P e
a = get_vec_start(v);
= Performance: determined by latency of OP! data t x = Igm;,. -
int i;

/* Combine 2 elements at a time */

Cycles per element (or per OP) for (i = 0; i < limit; i+=2) {

Method Int (add/mult) Float (add/mult)) x = (x OP d[i]) OP d[i+1];

combine4 22 10.0 5.0 7.0 /* Finish any remaining elements */
for (; i < length; i++) {

bound 1.0 1.0 2.0 2.0 x = x OP d[i];

}

*dest = x;

m Perform 2x more useful work per iteration

56 |
Effect of Loop Unrolling Loop Unrolling with Reassociation
Method Int (add/mult) Float (add/mult) void unroll2aa combine(vec_ptr v, data_t *dest)
{

combine4 2.2 10.0 5.0 7.0 int length = vec_length(v);

int limit = length-1;
unroll2 i 10.0 5.0 7.0 data t *d = get vec start(v):
bound 1.0 1.0 2.0 2.0 data_t x = IDENT;

int i;

/* Combine 2 elements at a time */

= Helps integer sum for (i = 0; i < limit; i+=2) {

m Others don’t improve. Why? , OF (d[1] OF d[i+1]);
= Still sequential dependency /* Finish any remaining elements */
for (; i < length; i++) {
x = (x OP d[i]) OP d[i+l]; N s xROBRd 117
*dest = x;

}

m Can this change the result of the computation?
m Yes, for FP. Why?

15-213/18-243, Fall 2009

Carnegie Mellon

Effect of Reassociation

Method Int (add/mult) Float (add/mult)
combine4 2.2 10.0 5.0 7.0
unroll2 i 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62
bound 1.0 1.0 2.0 2.0

= Nearly 2x speedup for Int *, FP +, FP *

= Reason: Breaks sequential dependency

x = x OP (d[i] OP d[i+l]);

= Why is that? (next slide)

Carnegie Mellon

Loop Unrolling with Separate Accumulators

void unroll2a combine(vec ptr v, data_t *dest)
{
int length = vec_length(v) ;

int limit = length-1;

data t *d = get vec_start(v);
data_t x0 = IDENT;

data_t x1 = IDENT;

int i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x0 = x0 OP d[i];

x1 = x1 OP d[i+l];
}
/* Finish any remaining elements */
for (; i < length; i++) {

x0 = x0 OP d[i];

}
*dest = x0 OP x1;
}

m Different form of reassociation

Carnegie Mellon

Separate Accumulators

%0 = x0 OP d[i]; = What changed:
= x1 OP d[i+l]; = Two independent “streams” of
operations

m Overall Performance
= N elements, D cycles latency/op
= Should be (N/2+1)*D cycles:
CPE=D/2
= CPE matches prediction!

What Now?

Carnegie Mellon

Reassociated Computation

= What changed:
= Ops in the next iteration can be
started early (no dependency)

‘x = x OP (d[i] OP d[i+l]); ‘

m Overall Performance
= N elements, D cycles latency/op
= Should be (N/2+1)*D cycles:
CPE=D/2
= Measured CPE slightly worse for

Carnegie Mellon

Effect of Separate Accumulators

Method Int (add/mult) Float (add/mult)
combine4 2.2 10.0 5.0 7.0
unroll2 i 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62
unroll2-sa 1.50 5.0 23 B
bound 1.0 1.0 2.0 2.0

= Amost exact 2x speedup (over unroll2) for Int *, FP +, FP *
= Breaks sequential dependency in a “cleaner,” more obvious way

x0 = x0 OP d[i];
x1 = x1 OP d[i+l];

Carnegie Mellon

Unrolling & Accumulating

n Idea
= Can unroll to any degree L
= Can accumulate K results in parallel
= L must be multiple of K

= Limitations
= Diminishing returns
= Cannot go beyond throughput limitations of execution units
= Large overhead for short lengths
= Finish off iterations sequentially

15-213/18-243, Fall 2009

Carnegie Mellon

Unrolling & Accumulating: Intel FP *

= Case
= Intel Nocona (Saltwater fish machines)
= FP Multiplication
® Theoretical Limit: 2.00

FP* Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 7.00 7.00 7.01 7.00
g 2 3.50 3.50 3.50
*\g 3 2.34
g 4 2.01 2.00
S 6 2.00 2.01
3
< 8 2.01
10 2.00
12 2.00

Carnegie Mellon

Unrolling & Accumulating: Intel Int *

u Case
= Intel Nocona (Saltwater fish machines)
= Integer Multiplication
® Theoretical Limit: 1.00

Int * Unrolling Factor L

K 1 2 3] 4 6 8 10 12
1 10.00 10.00 10.00 10.01
2 5.00 5.01 5.00
2 333
4 2.50 251
6 1.67 1.67
8 1.25

10 1.09

12 1.14

Carnegie Mellon

FP* Unrolling Factor L
K1 2 3 4 6 s 1 1 FP*:
1 7.00 7.00 7.01 7.00
2 3.50 3.50 3.50 Nocona versus
2 3 Core 2
4 2.01 2.00
6 2.00 2.01
3 201 = Machines
10 2.00 = Intel Nocona
12 2.00 = 3.2GHz
FP* Unrolling Factor L = |ntel Core 2
K 1 2 3 4 6 8 10 12 . 2.7GHz
1 400 4.00 4.00 4,01
2 2.00 2.00 2.00 = Performance
3 134 = Core 2 lower latency
4 @ Yo & fully pipelined
3 To0 To0 (1 cycle/issue)
8 1.00
10 1.00
12 1.00

Carnegie Mellon

Unrolling & Accumulating: Intel FP +

= Case
= Intel Nocona (Saltwater fish machines)
= FP Addition
® Theoretical Limit: 2.00

FP + Unrolling Factor L

K 1 2 3] 4 6 8 10 12
1 500 5.00 5.02 5.00
2 2.50 251 251
2 2.00
4 2.01 2.00
6 2.00 1.99
8 2.01

10 2.00

12 2.00

Carnegie Mellon

Unrolling & Accumulating: Intel Int +

= Case
= Intel Nocona (Saltwater fish machines)
= Integer addition
= Theoretical Limit: 1.00 (unrolling enough)

Int + Unrolling Factor L

K 1 2 3] 4 6 8 10 12
1 220 150 1.10 1.03
2 1.50 1.10 1.03
2 1.34
4 1.09 1.03
6 1.01 1.01
8 1.03

10 1.04

12 111

Int ! Unrolling Factor L

K 123468 10]1 Nocona vs.
1 10.00| 10.00 10.00 10.01 Core 2 Int *
2 5.00 5.01 5.00
3 3.33
: 250 & 251 ol Performance
s 125 = Newer version of
T 109 GCC does
% 12 reassociation
Int * Unrolling Factor L = Whyfor int’s and not
for float’s?
K 1 2 3 4 6 8 10 | 12
1 3.00| 150 1.00 1.00
2 1.50 1.00 1.00
3 1.00
4 1.00 1.00
6 1.00 1.00
8 1.00
10 1.00
12 133 -
72

15-213/18-243, Fall 2009

FP* Unrolling Factor L .
K 1 2 3 | 4 6 8 | 10 | 12 *
1 7.00| 7.00 7.01 7.00
2 3.50 3.50 3.50
3 234 = Machines
4 2.01 2.00 = |ntel Nocona
6 2.00 2,01 . 3.2 GHz
io 20 700 = AMD Opteron
2 2.00 = 2.0GHz
FP* Unrolling Factor L m Performance
K 1 2 3 4 6 8 | 10 | 12 = AMD lower latency
1 4.00| 4.00 4.00 4,01 & better pipelining
2 2.00 2.00 2.00 = But slower clock rate
3 134
4 1.00 1.00
6 1.00 1.00
8 1.00
10 1.00
12 1.00
Int + Unrolling Factor L .
K 1 2 3 | 4 6 8 | 10 | 12
1 2.20| 150 1.10 1.03 +
2 1.50 1.10 1.03
3 134 = Performance
4 1.09 1.03 = AMD gets below 1.0
6 1.01 1.01 = Even just with
8 1.03 unrolling
10 104 = Explanation
2 111 = Both Intel & AMD
Int+ Unrolling Factor L can “double pump”
K 123 afe|s 1] integer units
1 232| 150 0.75 0.63 ® Only AMD can load
2 150 083 063 two elements / cycle
3 1.00
4 1.00 0.63
6 0.83 0.67
8 0.63
10 0.60
12 0.85

Summary

= Optimization comes from many directions:
= Algorithm design: huge potential
= Optimizing compilers: effective but conservative
= Manual tuning: many techniques
= Parallel computation: we'll talk about this later

= Understanding processors, memory, and compilers

Int Unrolling Factor L .
K 1 2 3 4 6 8 | 10 | 12
Int *

1 10.00| 10.00 10.00 10.01

2 5.00 5.01 5.00

3 333 m Performance
4 2.50 2.51 = AMD multiplier

6 1.67 1.67 much lower latency
8 1.25 = Can get high

10 1.09 performance with
2 114 less work

= = Doesn’t achieve as
Int * Unrolling Factor L .
good an optimum

K 1 2 3 4 6 8 | 10 | 12

1 3.00| 3.00 3.00 3.00

2 2.33 2.0 135

3 2.00

4 175 138

6 1.50 1.50

8 175

10 1.30

12 133

Can We Go Faster?

= Yes, SSE!
= But not in this class©
" 18-645

