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m Address Space at Run Time
m Linking
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not drawn to scale
Memory Allocation Example
C0000000
Stack
char big array[1<<24]; /* 16 MB */
char huge_array[1<<28]; /* 256 MB */
int beyond;
char *pl, *p2, *p3, *p4;
int useless() { return 0; }
int main()
{
pl = malloc(l <<28); /* 256 MB */
P2 = malloc(l << 8); /* 256 B */
p3 = malloc(l <<28); /* 256 MB */ N
p4 = malloc(l << 8); /* 256 B */
/* Some print statements ... */ Heap
} Data
- Text
Where does everything go? 08000000
00000000
5 |
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1A32 Linux Memory Layout ;000000
Stack
= Stack

® Runtime stack (8MB limit) L
m Heap

= Dynamically allocated storage

® Whencallmalloc(), calloc(), new()
= Data

= Statically allocated data

= E.g., arrays & strings declared in code
m Text

® Executable machine instructions

= Read-only

8MB,

Heap
Data
Text

08000000
00000000
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not drawn to scale
IA32 Example Addresses
C0000000
address range ~232 Stack
$esp Oxf£ffbcd0
p3 0x65586008
pl 0x55585008
p4 0x1904al110
p2 0x1904a008
&p2 0x18049760
beyond 0x08049744
big_array 0x18049780 80000000 4
huge_array 0x08049760
main () 0x080483c6 "
useless () 0x08049744 CEL
final malloc() 0x006bel66
Data
malloc() isdynamically linked 08000000 Text
address determined at runtime 00000000
6 |
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x86-64 Example Addresses  oooorr—
acl

address range ~2°7 L
$rsp 0x7£££,7576,0050
pl 0x2b7£,e3£7,1010
p3 0x2b7£,£3£7,2010
p4 0x0000,1150,1120
p2 0x0000,1150,1010
beyond 0x0000,1150,0a28
big_array 0x0000,1050,0a20
sp2 0x0000,1050,0a00 000030 A
huge_array 0x0000,0050,0a00
main () 0x0000,0040,0510
useless () 0x0000,0040,0500 Heap
final malloc() 0x0038, 6ae6,al70

Data
malloc() isdynamically linked Text
address determined at runtime 000000

Static Linking

= Programs are translated and linked using a compiler driver:
unix> gcc -02 -g -o p main.c swap.c

unix> ./p
main.c swap.c Source files
Translators Translators
(cpp,ccl,as (cpp,ccl, as)
\4 Separately compiled
main.o swap.o relocatable object files
[ Linker (Id) |
¢ Fully linked executable object file
P (contains code and data for all functions

defined in main.c and swap.c

Why Linkers? Efficiency!

m Time: Separate Compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

m Space: Libraries
= Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only code
for the functions they actually use.

Carnegie Mellon

Example C Program

main.c swap.c
int buf[2] = {1, 2}; extern int buf[];
int main() static int *bufp0 = &buf[0];
{ static int *bufpl;

swap () ;

return 0; void swap ()
}

int temp;

bufpl = &buf[l];
temp = *bufp0;
*bufp0 *bufpl;
*bufpl temp;
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Why Linkers? Modularity!

= Program can be written as a collection of smaller source files,
rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

What Do Linkers Do?

= Step 1: Symbol resolution
= Programs define and reference symbols (variables and functions):
= void swap() {..} /* define symbol swap */
= swap() ; /* reference symbol swap */
= int *xp = &x; /* define xp, reference x */
= Symbol definitions are stored (by compiler) in symbol table.
= Symbol table is an array of structs
= Each entry includes name, type, size, and location of symbol.

= Linker associates each symbol reference with exactly one symbol
definition.
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What Do Linkers Do? (cont.)

m Step 2: Relocation
= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to their
final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new positions.
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Executable and Linkable Format (ELF)

= Standard binary format for object files
m Originally proposed by AT&T System V Unix
= Later adopted by BSD Unix variants and Linux
= One unified format for
= Relocatable object files (. o),
= Executable object files
= Shared object files (.s0)

m Generic name: ELF binaries
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ELF Object File Format (cont.)
= .symtab section o
= Symbol table ELF header
® Procedure and static variable names S
= Section names and locations (required for executables)
m .rel.text section text section
® Relocation info for . text section =
® Addresses of instructions that will need to be aodatasection
modified in the executable D
= Instructions for modifying. 5 =
.bss section
= .rel.datasection =
® Relocation info for . data section o piE) )
= Addresses of pointer data that will need to be .rel.txt section
modified in the merged executable Tl data) section
= .debug section o =
= Info for symbolic debugging (gcc -g) -dedug sechon
m Section header table Section header table
= Offsets and sizes of each section

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

® Contains code and data in a form that can be combined with other relocatable
object files to form executable object file.

= Each .o file is produced from exactly one source (.c) file

m Executable object file

= Contains code and data in a form that can be copied directly into
memory and then executed.

= Shared object file (. so file)

= Special type of relocatable object file that can be loaded into memory
and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows
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ELF Object File Format
u Elf header
= Word size, byte ordering, file type (.o, exec, 0
.s0), machine type, etc. ELF header
= Segment header table Segment header table
= For executables: virtual address, segment size, (required for executables)
alignments . text section
= . text section .rodata section
= Code .data section
m .rodata section e SR
= Read only data: jump tables, ... _symtab section
= .data section .rel.txt section
. g .
Initialized global variables rel.data section
= .bss section _debug section
= Uninitialized global variables
= “Block Started by Symbol” Section header table
= “Better Save Space”
® Has section header but occupies no space
16 |

Linker Symbols

= Global symbols
= Symbols defined by module m that can be referenced by other modules.
= E.g.:non-static C functions and non-static global variables.

= External symbols

= Global symbols that are referenced by module m but defined by some
other module.

= Local symbols
= Symbols that are defined and referenced exclusively by module m.
= E.g.: Cfunctions and variables defined with the static attribute.
= Local linker symbols are not local program variables
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Resolving Symbols Relocating Code and Data
Global External Local Relocatable Object Files Executable Object File
N \
int buf[2] = {1, 2}; extern int buf[];
t21 1,2 l System code -text 0
data Headers
int main() static int *buf] = &buf[0]; System data .da’
( static int *bufpl; ——wenc Systemcode
swap () ; \ main ()
repurn 0; void swap () €——— Global main.o .text
} main.c swap ()
int temp; main () .text _»
i = .dat More system code
External Linker knows _—+"bufpl = sbuf[1]; EnERbUS2) =2} ata U
nothing of tem temp = *bufp0; | Systemdata |
¢ i *bug 0 = ‘:bzf ilg swap.o int buf[2]={1,2} .data
. P PL/ / Int *bufp0=&buf[0]
bufpl = temp; swap () text Uninitialized data -bss
} B¥apEIC) int *bufp0=sbuf[0]] -data .symtab
int *bufpl .bss -debug
19 | 2 |
Relocation Info (main) Relocation Info (swap, . text)
main.c main.o swap.c swap.o
int buf[2] = {1,2}; |[0000000 <main>: - - - - -
’ o: 55 push  sebp extern int buf[]; Disassembly of section .text:
5 5 i3 89 e5 mov %esp, $ebp 3
nt main 5 5 = 00000000 <: >
:; (0 3: 83 ec 08 sub $0x8, sesp static int *bufp0 = 0: Swap: TEh e
. 6: 8 fc ff £f £f call 7 <main+0x7> &buf [0] ; 1: 8b 15 00 00 00 00 mov  0x0 %edx
swap () ; 7: R_386_PC32 swap static int *bufpl; : 3: R 386 35 bufp0
return 0; b: 31 c0 xor %eax, teax 7: al 0 00 00 00 mov ~ Ox4,%eax
} d: 89 ec mov $ebp, sesp void swap() 8: R 386 32 buf
f ezl Pop RSCE { c: 89 e5 mov %esp, $ebp
TOCNNCS) zet int temp; e: c7 05 00 00 00 00 O‘movl  $0x4,0x0
15:
Di embly of tion .data:
SEELH 87 CH LSS 2 bufpl = sbuf[1]; 10: R 386_32 bufpl
00000000 <buf>: temp = *bufp0; .
0: 0L 00 00 00 02 00 00 00 *bufp0 = *bufpl; 18: 89 ec U s
*bufpl = temp; lc: 89 02 mov  %eax, (%edx)
} le: al 00 00 00 00 mov  0x0,%eax
1f: R_386_32 bufpl
: 89 08 mov %ecx, (%eax)
Source: objdump N ‘5;; izi #ebp
2 |
Relocation Info (swap, .data) Executable After Relocation (.text)
080483b4 <main>:
80483b4: 55 push %ebp
swap.c 80483b5: 89 e5 mov %esp, $ebp
extern int buf[]; Disassembly of section .data: 80483b7: 83 ec 08 sub $0x8, tesp
80483ba: e8 09 00 00 00 call 80483c8 <swap>
q g * = 00000000 <bufp0>: 80483bf: 31 c0 xor %eax, $eax
OEXEE dme &::?[’g], 0: 00 00 00 00 80483c1: 89 ec mov  %ebp,%esp
. . p ’ 80483c3: 5d pop %ebp
static int *bufpl; 0: R 386_32 buf 80483c4: c3 ret
080483c8 <swap>:
void swap () 80483c8: 55 push %ebp
{ 80483c9: 8b 15 5c 94 04 08 mov 0x804945¢, $edx
int temp; 80483cf: al 58 94 04 08 mov 0x8049458, %eax
80483d4: 89 e5 mov %esp, $ebp
bufpl = sbuf[l]; :g::iggf c7 05 48 95 04 08 movl  $0x8049458,0x8049548
:emp = *b:fpo; 80483e0: 89 ec mov %ebp, $esp
bufp0 = *bufpl; 80483e2: 8b Oa mov (%edx) , secx
*bufpl = temp; 80483ed: 89 02 mov  %eax, (%edx)
} 80483e6: al mov 0x8049548, %eax
80483eb: 89 08 mov %ecx, (%eax)
80483ed: 5d pop %ebp
80483ee: c3 ret
[ 2; | 2 |
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Executable After Relocation (.data)

Disassembly of section .data:

08049454 <buf>:
8049454: 01 00 00 00 02 00 00 00

0804945¢c <bufp0>:
804945c: 54 94 04 08

Linker’s Symbol Rules

= Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once
= Otherwise: Linker error

= Rule 2: Given a strong symbol and multiple weak symbol,
choose the strong symbol
= References to the weak symbol resolve to the strong symbol

= Rule 3: If there are multiple weak symbols, pick an arbitrary
one
= Can override this with gcc —fno-common

Global Variables

= Avoid if you can

= Otherwise
= Use static ifyoucan
= |nitialize if you define a global variable
= Use extern if you use external global variable

Strong and Weak Symbols
= Program symbols are either strong or weak

= Strong: procedures and initialized globals
= Weak: uninitialized globals

pl.c p2.c
strong ——| int foo=5; int foo; | ——— weak
strong ———|[P1() { p2() { <— strong
} }
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Linker Puzzles

Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

int x; . . . :
;:t ;; W.ntes to x in p2 might overwrite y!
PLO) {} Evil!

int x=7; Writes to x in p2 will overwrite y!
int y=5; Nasty!

Pl() {}

References to x will refer to the same initialized
variable.

Nightmare scenario: two identical weak structs, iled by different
with different alignment rules.
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Packaging Commonly Used Functions

= How to package functions commonly used by programmers?

= Math, I/O, memory management, string manipulation, etc.

= Awkward, given the linker framework so far:

= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient

= Option 2: Put each function in a separate source file
= Programmers explicitly link appropriate binaries into their

programs

= More efficient, but burdensome on the programmer
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Solution: Static Libraries
m Static libraries (.a archive files)
= Concatenate related relocatable object files into a single file with an

index (called an archive).

= Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link into executable.

Commonly Used Libraries

1libc. a (the C standard library)
= 8 MB archive of 900 object files.
= 1/0, memory allocation, signal handling, string handling, data and time, random
numbers, integer math
1libm. a (the C math library)
1 MB archive of 226 object files.
floating point math (sin, cos, tan, log, exp, sqrt, ...)

% ar -t /usr/lib/libc.a | sort % ar -t /usr/lib/libm.a | sort
fork.o e acos.o
e acosf.o
fprintf.o e _acosh.o
fpu_control.o e _acoshf.o
fputc.o e _acoshl.o
freopen.o e acosl.o
fscanf.o e asin.o
fseek.o e asinf.o
fstab.o e asinl.o
E

Using Static Libraries

m Linker’s algorithm for resolving external references:

Scan . o files and . a files in the command line order.

During the scan, keep a list of the current unresolved references.
As each new .o or . a file, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.
If any entries in the unresolved list at end of scan, then error.

= Problem:
= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function ‘main':
libtest.o(.text+0x4): undefined reference to 'libfun'
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Creating Static Libraries

atoi.c printf.c random.c
| Translator | | Translator | | Translator |
atoi.o printf.o random.o

|

| Archiver (ar)

| unix> ar rs libc.a \
atoi.o printf.o .. random.o

libc.a C standard library

m Archiver allows incremental updates
= Recompile function that changes and replace .o file in archive.
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Linking with Static Libraries

addvec.o multvec.o

main2.c vector.h

libvector.a libc.a Static libraries

Translators
(cpp, ccl, as)

Relocatable main2.o addvec.o printf.o and any other
object files modules called by printf.o
| Linker (1d)
p2 Fully linked

executable object file

Carnegie Mellon

Loading Executable Object Files
Memory
Executable Object File e ey T invisible to
o user code
ELF header User stack
Program header table (created at runtime) N
(required for executables) esp
(stack
.init section 4 pointer)
-text section Memory-mapped region for
Proaatalection shared libraries
.data section
-bss section T brk
symtab Run-time heap
(created bymalloc)
.debug
= Read/write segment Loaded
line (.data, .bss) from
the
-strtab Read-only segment executable
Section header table (.init, .text, .rodata) file
(required for relocatables) ]
° E
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Shared Libraries

m Static libraries have the following disadvantages:
= Duplication in the stored executables (every function need std libc)

Duplication in the running executables

Minor bug fixes of system libraries require each application to explicitly
relink

= Modern Solution: Shared Libraries
= Object files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time
= Also called: dynamic link libraries, DLLs, .so files

Carnegie Mellon

Dynamic Linking at Load-time
main2.c vector.h unix> gcc -shared -o libvector.so \
addvec.c multvec.c
Translators
(epp, ccl, as) libc.so
libvector.so
Reloclamblle main2.o Relocation and symbol
object file table info
‘ Linker (1d) ‘
Partially linked P£
executable object file
estor.
(execve) libvector.so
l Code and data
Fully linked
executable ‘ Dynamic linker (1d-1inux.so) ‘
in memory
[ 39 |

Dynamic Linking at Run-time

/* get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");

if ((error = dlerror()) !'= NULL)
fprintf (stderr, "%$s\n", error);
exit(1);

}

/* Now we can call addvec() it just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* unload the shared library */

if (dlclose(handle) < 0) {
fprintf (stderr, "%$s\n", dlerror()):;
exit(1);

return 0;
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Shared Libraries (cont.)

= Dynamic linking can occur when executable is first loaded
and run (load-time linking).

= Common case for Linux, handled automatically by the dynamic linker
(ld-1linux.so).
= Standard C library (Libec . so) usually dynamically linked.

= Dynamic linking can also occur after program has begun
(run-time linking).
= In Unix, this is done by calls to the dlopen () interface.
= High-performance web servers.
= Runtime library interpositioning

m Shared library routines can be shared by multiple processes.

= More on this when we learn about virtual memory

Dynamic Linking at Runtime

#include <stdio.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()

void *handle;
void (*addvec) (int *, int *, int *, int);
char *error;

/* dynamically load the shared lib that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY);
if ('handle) {

fprintf (stderr, "%$s\n", dlerror()):;

exit(1);

Case Study: Library Interpositioning

Library interpositioning is a powerful linking technique that
allows programmers to intercept calls to arbitrary functions
Interpositioning can occur at:
= compile time
= When the source code is compiled
= link time
= When the relocatable object files are linked to form an executable
object file
= |oad/run time
= When an executable object file is loaded into memory, dynamically
linked, and then executed.
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Some Interpositioning Applications

Security
= Confinement (sandboxing)
= Interpose calls to libc functions.
= Behind the scenes encryption
= Automatically encrypt otherwise unencrypted network
connections.
Monitoring and Profiling
= Count number of calls to functions
= Characterize call sites and arguments to functions
= Malloc tracing
= Detecting memory leaks
= Generating malloc traces
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Summary

m ELF files contain
= Object files
= Libraries
= Executables

m Linking

= Loading

= Dynamic Linking

m Details:
= How are globals, externals, static symbols handled?
= How are names searched and resolved by linkers?
= How can you interpose your own library implementation?

Example: malloc () Statistics

Count how much memory is allocated by a function

void *malloc(size_t size){
static void * (*£fp) (size_t) = 0;
void *mp;
char *errorstr;

/* Get a pointer to the real malloc() */

if ('£p) {
fp = dlsym(RTLD_NEXT, "malloc");
if ((errorstr = dlerror()) != NULL) {
fprintf (stderr, "%$s(): %s\n", fname, errorstr);
exit(1);

}

/* Call the real malloc function */
mp = fp(size);

mem _used += size;

return mp;




