15-213/18-243, Fall 2009

Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, fall 2009
9th Lecture, Sep 29t

Instructors:
Roger B. Dannenberg and Greg Ganger

Today

m Address Space at Run Time
m Linking

Carnegie Mellon

not drawn to scale
Memory Allocation Example
C0000000
Stack
char big array[1<<24]; /* 16 MB */
char huge_array[1<<28]; /* 256 MB */
int beyond;
char *pl, *p2, *p3, *p4;
int useless() { return 0; }
int main()
{
pl = malloc(l <<28); /* 256 MB */
P2 = malloc(l << 8); /* 256 B */
p3 = malloc(l <<28); /* 256 MB */ N
p4 = malloc(l << 8); /* 256 B */
/* Some print statements ... */ Heap
} Data
- Text
Where does everything go? 08000000
00000000
5 |

Carnegie Mellon

First Exam

<20 21-30 3140 41-50 51-60 61-70 71-80 81-90 91-100

Exam1 Grade as Percent

Carnegie Mellon

not drawn to scale

1A32 Linux Memory Layout ;000000
Stack
= Stack

® Runtime stack (8MB limit) L
m Heap

= Dynamically allocated storage

® Whencallmalloc(), calloc(), new()
= Data

= Statically allocated data

= E.g., arrays & strings declared in code
m Text

® Executable machine instructions

= Read-only

8MB,

Heap
Data
Text

08000000
00000000

Carnegie Mellon

not drawn to scale
IA32 Example Addresses
C0000000
address range ~232 Stack
$esp Oxf£ffbcd0
p3 0x65586008
pl 0x55585008
p4 0x1904al110
p2 0x1904a008
&p2 0x18049760
beyond 0x08049744
big_array 0x18049780 80000000 4
huge_array 0x08049760
main () 0x080483c6 "
useless () 0x08049744 CEL
final malloc() 0x006bel66
Data
malloc() isdynamically linked 08000000 Text
address determined at runtime 00000000
6 |

15-213/18-243, Fall 2009

Carnegie Mellon

not drawn to scale

x86-64 Example Addresses oooorr—
acl

address range ~2°7 L
$rsp 0x7£££,7576,0050
pl 0x2b7£,e3£7,1010
p3 0x2b7£,£3£7,2010
p4 0x0000,1150,1120
p2 0x0000,1150,1010
beyond 0x0000,1150,0a28
big_array 0x0000,1050,0a20
sp2 0x0000,1050,0a00 000030 A
huge_array 0x0000,0050,0a00
main () 0x0000,0040,0510
useless () 0x0000,0040,0500 Heap
final malloc() 0x0038, 6ae6,al70

Data
malloc() isdynamically linked Text
address determined at runtime 000000

Static Linking

= Programs are translated and linked using a compiler driver:
unix> gcc -02 -g -o p main.c swap.c

unix> ./p
main.c swap.c Source files
Translators Translators
(cpp,ccl,as (cpp,ccl, as)
\4 Separately compiled
main.o swap.o relocatable object files
[Linker (Id) |
¢ Fully linked executable object file
P (contains code and data for all functions

defined in main.c and swap.c

Why Linkers? Efficiency!

m Time: Separate Compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

m Space: Libraries
= Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only code
for the functions they actually use.

Carnegie Mellon

Example C Program

main.c swap.c
int buf[2] = {1, 2}; extern int buf[];
int main() static int *bufp0 = &buf[0];
{ static int *bufpl;

swap () ;

return 0; void swap ()
}

int temp;

bufpl = &buf[l];
temp = *bufp0;
*bufp0 *bufpl;
*bufpl temp;

Carnegie Mellon

Why Linkers? Modularity!

= Program can be written as a collection of smaller source files,
rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

What Do Linkers Do?

= Step 1: Symbol resolution
= Programs define and reference symbols (variables and functions):
= void swap() {..} /* define symbol swap */
= swap() ; /* reference symbol swap */
= int *xp = &x; /* define xp, reference x */
= Symbol definitions are stored (by compiler) in symbol table.
= Symbol table is an array of structs
= Each entry includes name, type, size, and location of symbol.

= Linker associates each symbol reference with exactly one symbol
definition.

15-213/18-243, Fall 2009

Carnegie Mellon

What Do Linkers Do? (cont.)

m Step 2: Relocation
= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to their
final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new positions.

Carnegie Mellon

Executable and Linkable Format (ELF)

= Standard binary format for object files
m Originally proposed by AT&T System V Unix
= Later adopted by BSD Unix variants and Linux
= One unified format for
= Relocatable object files (. o),
= Executable object files
= Shared object files (.s0)

m Generic name: ELF binaries

Carnegie Mellon

ELF Object File Format (cont.)
= .symtab section o
= Symbol table ELF header
® Procedure and static variable names S
= Section names and locations (required for executables)
m .rel.text section text section
® Relocation info for . text section =
® Addresses of instructions that will need to be aodatasection
modified in the executable D
= Instructions for modifying. 5 =
.bss section
= .rel.datasection =
® Relocation info for . data section o piE))
= Addresses of pointer data that will need to be .rel.txt section
modified in the merged executable Tl data) section
= .debug section o =
= Info for symbolic debugging (gcc -g) -dedug sechon
m Section header table Section header table
= Offsets and sizes of each section

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

® Contains code and data in a form that can be combined with other relocatable
object files to form executable object file.

= Each .o file is produced from exactly one source (.c) file

m Executable object file

= Contains code and data in a form that can be copied directly into
memory and then executed.

= Shared object file (. so file)

= Special type of relocatable object file that can be loaded into memory
and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

Carnegie Mellon

ELF Object File Format
u Elf header
= Word size, byte ordering, file type (.o, exec, 0
.s0), machine type, etc. ELF header
= Segment header table Segment header table
= For executables: virtual address, segment size, (required for executables)
alignments . text section
= . text section .rodata section
= Code .data section
m .rodata section e SR
= Read only data: jump tables, ... _symtab section
= .data section .rel.txt section
. g .
Initialized global variables rel.data section
= .bss section _debug section
= Uninitialized global variables
= “Block Started by Symbol” Section header table
= “Better Save Space”
® Has section header but occupies no space
16 |

Linker Symbols

= Global symbols
= Symbols defined by module m that can be referenced by other modules.
= E.g.:non-static C functions and non-static global variables.

= External symbols

= Global symbols that are referenced by module m but defined by some
other module.

= Local symbols
= Symbols that are defined and referenced exclusively by module m.
= E.g.: Cfunctions and variables defined with the static attribute.
= Local linker symbols are not local program variables

15-213/18-243, Fall 2009

Resolving Symbols Relocating Code and Data
Global External Local Relocatable Object Files Executable Object File
N \
int buf[2] = {1, 2}; extern int buf[];
t21 1,2 l System code -text 0
data Headers
int main() static int *buf] = &buf[0]; System data .da’
(static int *bufpl; ——wenc Systemcode
swap () ; \ main ()
repurn 0; void swap () €——— Global main.o .text
} main.c swap ()
int temp; main () .text _»
i = .dat More system code
External Linker knows _—+"bufpl = sbuf[1]; EnERbUS2) =2} ata U
nothing of tem temp = *bufp0; | Systemdata |
¢ i *bug 0 = ‘:bzf ilg swap.o int buf[2]={1,2} .data
. P PL/ / Int *bufp0=&buf[0]
bufpl = temp; swap () text Uninitialized data -bss
} B¥apEIC) int *bufp0=sbuf[0]] -data .symtab
int *bufpl .bss -debug
19 | 2 |
Relocation Info (main) Relocation Info (swap, . text)
main.c main.o swap.c swap.o
int buf[2] = {1,2}; |[0000000 <main>: - - - - -
’ o: 55 push sebp extern int buf[]; Disassembly of section .text:
5 5 i3 89 e5 mov %esp, $ebp 3
nt main 5 5 = 00000000 <: >
:; (0 3: 83 ec 08 sub $0x8, sesp static int *bufp0 = 0: Swap: TEh e
. 6: 8 fc ff £f £f call 7 <main+0x7> &buf [0] ; 1: 8b 15 00 00 00 00 mov 0x0 %edx
swap () ; 7: R_386_PC32 swap static int *bufpl; : 3: R 386 35 bufp0
return 0; b: 31 c0 xor %eax, teax 7: al 0 00 00 00 mov ~ Ox4,%eax
} d: 89 ec mov $ebp, sesp void swap() 8: R 386 32 buf
f ezl Pop RSCE { c: 89 e5 mov %esp, $ebp
TOCNNCS) zet int temp; e: c7 05 00 00 00 00 O‘movl $0x4,0x0
15:
Di embly of tion .data:
SEELH 87 CH LSS 2 bufpl = sbuf[1]; 10: R 386_32 bufpl
00000000 <buf>: temp = *bufp0; .
0: 0L 00 00 00 02 00 00 00 *bufp0 = *bufpl; 18: 89 ec U s
*bufpl = temp; lc: 89 02 mov %eax, (%edx)
} le: al 00 00 00 00 mov 0x0,%eax
1f: R_386_32 bufpl
: 89 08 mov %ecx, (%eax)
Source: objdump N ‘5;; izi #ebp
2 |
Relocation Info (swap, .data) Executable After Relocation (.text)
080483b4 <main>:
80483b4: 55 push %ebp
swap.c 80483b5: 89 e5 mov %esp, $ebp
extern int buf[]; Disassembly of section .data: 80483b7: 83 ec 08 sub $0x8, tesp
80483ba: e8 09 00 00 00 call 80483c8 <swap>
q g * = 00000000 <bufp0>: 80483bf: 31 c0 xor %eax, $eax
OEXEE dme &::?[’g], 0: 00 00 00 00 80483c1: 89 ec mov %ebp,%esp
. . p ’ 80483c3: 5d pop %ebp
static int *bufpl; 0: R 386_32 buf 80483c4: c3 ret
080483c8 <swap>:
void swap () 80483c8: 55 push %ebp
{ 80483c9: 8b 15 5c 94 04 08 mov 0x804945¢, $edx
int temp; 80483cf: al 58 94 04 08 mov 0x8049458, %eax
80483d4: 89 e5 mov %esp, $ebp
bufpl = sbuf[l]; :g::iggf c7 05 48 95 04 08 movl $0x8049458,0x8049548
:emp = *b:fpo; 80483e0: 89 ec mov %ebp, $esp
bufp0 = *bufpl; 80483e2: 8b Oa mov (%edx) , secx
*bufpl = temp; 80483ed: 89 02 mov %eax, (%edx)
} 80483e6: al mov 0x8049548, %eax
80483eb: 89 08 mov %ecx, (%eax)
80483ed: 5d pop %ebp
80483ee: c3 ret
[2; | 2 |

15-213/18-243, Fall 2009

Executable After Relocation (.data)

Disassembly of section .data:

08049454 <buf>:
8049454: 01 00 00 00 02 00 00 00

0804945¢c <bufp0>:
804945c: 54 94 04 08

Linker’s Symbol Rules

= Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once
= Otherwise: Linker error

= Rule 2: Given a strong symbol and multiple weak symbol,
choose the strong symbol
= References to the weak symbol resolve to the strong symbol

= Rule 3: If there are multiple weak symbols, pick an arbitrary
one
= Can override this with gcc —fno-common

Global Variables

= Avoid if you can

= Otherwise
= Use static ifyoucan
= |nitialize if you define a global variable
= Use extern if you use external global variable

Strong and Weak Symbols
= Program symbols are either strong or weak

= Strong: procedures and initialized globals
= Weak: uninitialized globals

pl.c p2.c
strong ——| int foo=5; int foo; | ——— weak
strong ———|[P1() { p2() { <— strong
} }

Carnegie Mellon

Linker Puzzles

Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

int x; . . . :
;:t ;; W.ntes to x in p2 might overwrite y!
PLO) {} Evil!

int x=7; Writes to x in p2 will overwrite y!
int y=5; Nasty!

Pl() {}

References to x will refer to the same initialized
variable.

Nightmare scenario: two identical weak structs, iled by different
with different alignment rules.

Carnegie Mellon

Packaging Commonly Used Functions

= How to package functions commonly used by programmers?

= Math, I/O, memory management, string manipulation, etc.

= Awkward, given the linker framework so far:

= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient

= Option 2: Put each function in a separate source file
= Programmers explicitly link appropriate binaries into their

programs

= More efficient, but burdensome on the programmer

15-213/18-243, Fall 2009

Solution: Static Libraries
m Static libraries (.a archive files)
= Concatenate related relocatable object files into a single file with an

index (called an archive).

= Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link into executable.

Commonly Used Libraries

1libc. a (the C standard library)
= 8 MB archive of 900 object files.
= 1/0, memory allocation, signal handling, string handling, data and time, random
numbers, integer math
1libm. a (the C math library)
1 MB archive of 226 object files.
floating point math (sin, cos, tan, log, exp, sqrt, ...)

% ar -t /usr/lib/libc.a | sort % ar -t /usr/lib/libm.a | sort
fork.o e acos.o
e acosf.o
fprintf.o e _acosh.o
fpu_control.o e _acoshf.o
fputc.o e _acoshl.o
freopen.o e acosl.o
fscanf.o e asin.o
fseek.o e asinf.o
fstab.o e asinl.o
E

Using Static Libraries

m Linker’s algorithm for resolving external references:

Scan . o files and . a files in the command line order.

During the scan, keep a list of the current unresolved references.
As each new .o or . a file, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.
If any entries in the unresolved list at end of scan, then error.

= Problem:
= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function ‘main':
libtest.o(.text+0x4): undefined reference to 'libfun'

Carnegie Mellon

Creating Static Libraries

atoi.c printf.c random.c
| Translator | | Translator | | Translator |
atoi.o printf.o random.o

|

| Archiver (ar)

| unix> ar rs libc.a \
atoi.o printf.o .. random.o

libc.a C standard library

m Archiver allows incremental updates
= Recompile function that changes and replace .o file in archive.

Carnegie Mellon

Linking with Static Libraries

addvec.o multvec.o

main2.c vector.h

libvector.a libc.a Static libraries

Translators
(cpp, ccl, as)

Relocatable main2.o addvec.o printf.o and any other
object files modules called by printf.o
| Linker (1d)
p2 Fully linked

executable object file

Carnegie Mellon

Loading Executable Object Files
Memory
Executable Object File e ey T invisible to
o user code
ELF header User stack
Program header table (created at runtime) N
(required for executables) esp
(stack
.init section 4 pointer)
-text section Memory-mapped region for
Proaatalection shared libraries
.data section
-bss section T brk
symtab Run-time heap
(created bymalloc)
.debug
= Read/write segment Loaded
line (.data, .bss) from
the
-strtab Read-only segment executable
Section header table (.init, .text, .rodata) file
(required for relocatables)]
° E

15-213/18-243, Fall 2009

Shared Libraries

m Static libraries have the following disadvantages:
= Duplication in the stored executables (every function need std libc)

Duplication in the running executables

Minor bug fixes of system libraries require each application to explicitly
relink

= Modern Solution: Shared Libraries
= Object files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time
= Also called: dynamic link libraries, DLLs, .so files

Carnegie Mellon

Dynamic Linking at Load-time
main2.c vector.h unix> gcc -shared -o libvector.so \
addvec.c multvec.c
Translators
(epp, ccl, as) libc.so
libvector.so
Reloclamblle main2.o Relocation and symbol
object file table info
‘ Linker (1d) ‘
Partially linked P£
executable object file
estor.
(execve) libvector.so
l Code and data
Fully linked
executable ‘ Dynamic linker (1d-1inux.so) ‘
in memory
[39 |

Dynamic Linking at Run-time

/* get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");

if ((error = dlerror()) !'= NULL)
fprintf (stderr, "%$s\n", error);
exit(1);

}

/* Now we can call addvec() it just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* unload the shared library */

if (dlclose(handle) < 0) {
fprintf (stderr, "%$s\n", dlerror()):;
exit(1);

return 0;

Carnegie Mellon

Shared Libraries (cont.)

= Dynamic linking can occur when executable is first loaded
and run (load-time linking).

= Common case for Linux, handled automatically by the dynamic linker
(ld-1linux.so).
= Standard C library (Libec . so) usually dynamically linked.

= Dynamic linking can also occur after program has begun
(run-time linking).
= In Unix, this is done by calls to the dlopen () interface.
= High-performance web servers.
= Runtime library interpositioning

m Shared library routines can be shared by multiple processes.

= More on this when we learn about virtual memory

Dynamic Linking at Runtime

#include <stdio.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()

void *handle;
void (*addvec) (int *, int *, int *, int);
char *error;

/* dynamically load the shared lib that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY);
if ('handle) {

fprintf (stderr, "%$s\n", dlerror()):;

exit(1);

Case Study: Library Interpositioning

Library interpositioning is a powerful linking technique that
allows programmers to intercept calls to arbitrary functions
Interpositioning can occur at:
= compile time
= When the source code is compiled
= link time
= When the relocatable object files are linked to form an executable
object file
= |oad/run time
= When an executable object file is loaded into memory, dynamically
linked, and then executed.

15-213/18-243, Fall 2009

Some Interpositioning Applications

Security
= Confinement (sandboxing)
= Interpose calls to libc functions.
= Behind the scenes encryption
= Automatically encrypt otherwise unencrypted network
connections.
Monitoring and Profiling
= Count number of calls to functions
= Characterize call sites and arguments to functions
= Malloc tracing
= Detecting memory leaks
= Generating malloc traces

Carnegie Mellon

Summary

m ELF files contain
= Object files
= Libraries
= Executables

m Linking

= Loading

= Dynamic Linking

m Details:
= How are globals, externals, static symbols handled?
= How are names searched and resolved by linkers?
= How can you interpose your own library implementation?

Example: malloc () Statistics

Count how much memory is allocated by a function

void *malloc(size_t size){
static void * (*£fp) (size_t) = 0;
void *mp;
char *errorstr;

/* Get a pointer to the real malloc() */

if ('£p) {
fp = dlsym(RTLD_NEXT, "malloc");
if ((errorstr = dlerror()) != NULL) {
fprintf (stderr, "%$s(): %s\n", fname, errorstr);
exit(1);

}

/* Call the real malloc function */
mp = fp(size);

mem _used += size;

return mp;

