Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, fall 2009
4t Lecture, Sep. 3"

Instructors:
Roger B. Dannenberg and Greg Ganger

Carnegie Mellon

Last Time: Floating Point

Fractional binary numbers

IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating point in C

Summary

Carnegie Mellon

Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

Carnegie Mellon

Intel x86 Processors

m Totally dominate computer market

m Evolutionary design

= Backwards compatible back to 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
" First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space

= 386 1985 275K 16-33

= First 32 bit processor, referred to as IA32

= Added “flat addressing”

= Capable of running Unix

= 32-bit Linux/gcc uses no instructions introduced in later models

m Pentium 4F 2005 230M 2800-3800

= First 64-bit processor

= Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of
“Core” line

Intel x86 Processors: Overview

X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium Il
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Core i7

IA: often redefined as latest Intel architecture

Intel x86 Processors, contd.

m Machine Evolution

= 486 1989 1.9M
" Pentium 1993 3.1M
= Pentium/MMX 1997 4.5M
" PentiumPro 1995 6.5M
= Pentium Il 1999 8.2M
" Pentium 4 2001 42M

" Core 2 Duo 2006 291M

m Added Features
" |nstructions to support multimedia operations
= Parallel operations on 1, 2, and 4-byte data, both integer & FP
" |nstructions to enable more efficient conditional operations

m Linux/GCC Evolution
= Very limited

Carnegie Mellon

More Information

m Intel processors (Wikipedia)

m Intel microarchitectures

Carnegie Mellon

New Species: ia64, then IPF, then Itanium,...

Name Date Transistors

m Itanium 2001 10M
= First shot at 64-bit architecture: first called I1A64
= Radically new instruction set designed for high performance
® Can run existing IA32 programs
= On-board “x86 engine”
= Joint project with Hewlett-Packard

m I[tanium 2 2002 221M
= Big performance boost
m Itanium 2 Dual-Core 2006 1.7B

m Itanium has not taken off in marketplace

= Lack of backward compatibility, no good compiler support, Pentium
4 got too good

Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recently
" Intel much quicker with dual core design

" Intel currently far ahead in performance
" em64t backwards compatible to x86-64

Carnegie Mellon

Intel’s 64-Bit
m Intel Attempted Radical Shift from IA32 to 1A64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to IA32
= Extended Memory 64-bit Technology

= Almost identical to x86-64!
= Qur Saltwater fish machines

m Meanwhile: EM64t well introduced,
however, still often not used by OS, programs

Carnegie Mellon

Our Coverage

m IA32
" The traditional x86

= x86-64/EM64T

" The emerging standard

m Presentation
= Book has IA32
= Handout has x86-64
= Lecture will cover both

Carnegie Mellon

Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

Definitions

m Architecture: (also instruction set architecture: ISA) The
parts of a processor design that one needs to understand
to write assembly code.

m Microarchitecture: Implementation of the architecture.

m Architecture examples: instruction set specification,
registers.

m Microarchitecture examples: cache sizes and core
frequency.

m Example ISAs (Intel): x86, IA, IPF

Assembly Programmer’s View

CPU Memory
Addresses
oc | | Registers ”| Object Code
< Data »| Program Data
Condition Instructions OS Data
Codes
Stack
m Programmer-Visible State
" PC: Program counter
= Address of next instruction
= Called “EIP” (IA32) or “RIP” (x86-64)
= Register file - Memory

= Heavily used program data

o, . = B |
= Condition codes yte addressable array

» Store status information about most
recent arithmetic operation

= Code, user data, (some) OS data

= Includes stack used to support

d
= Used for conditional branching procedures

Turning C into Object Code

= Codein files pl.c p2.c

= Compile with command: gce -0 pl.c p2.c -o p
= Use optimizations (-0O)
= Put resulting binary in file p

text C program (pl.c p2.c)

l Compiler (gcc -S)

text Asm program (pl.s p2.s)

l Assembler (gcc or as)

binary Object program (pl.o0 p2.0) Static libraries
' (.a)

l Linker (gcc or 1d)

binary Executable program (p)

Compiling Into Assembly

C Code

Generated IA32 Assembly

Carnegie Mellon

int sum(int x, int y)
{
int t = x+y;
return t;

Obtain with command

gcc -0 -S
code.c

Produces file code. s

/

sSum:

pushl %ebp

movl S%esp, Sebp
movl 12 (%ebp) , $eax
addl 8 (%ebp) , $eax

<£éovl %ebp, $esp

popl %ebp
ret

/

Some compilers use single
instruction “leave”

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

Carnegie Mellon

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Transfer control
" Unconditional jumps to/from procedures
® Conditional branches

Carnegie Mellon

Object Code

Code for sum

m Assembler

0x401040 <sum>:

0x55
0x89
Oxe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
Oxec
0x5d
Oxc3

" Translates .s into .o
= Binary encoding of each instruction
= Nearly-complete image of executable code

= Missing linkages between code in different
files

m Linker

= Resolves references between files

* Total of 13 bytes " Combines with static run-time libraries

e Each instruction .
» E.g.,codeformalloc,printf
1, 2, or 3 bytes 8 P

e Starts at address = Some libraries are dynamically linked

0x401040 = Linking occurs when program begins
execution

Carnegie Mellon

Machine Instruction Example

m C Code
= Add two signed integers

int t = x+y;

m Assembly
= Add 2 4-byte integers
» “Long” words in GCC parlance

addl 8 (%ebp) , $eax

Similar to expression: = Same instruction whether signed
X += y or unsigned
More precisely: " Operands:
int eax; x: Register %eax
int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] t: Register %eax
—Return function value in $eax
0x401046: 03 45 08 = Object Code

= 3-byte instruction
® Stored at address 0x401046

Disassembling Object Code

Disassembled
00401040 <_sum>:
0: 55 push %ebp
1: 89 e5 mov %esp, %sebp
3 8b 45 Oc mov Oxc (%ebp) , seax
6: 03 45 08 add 0x8 (%ebp) , seax
9: 89 ec mov %ebp, $esp
b: 5d pop %ebp
c c3 ret
d 8d 76 00 lea 0x0 (%esi) , $esi

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can berun on either a.out (complete executable) or . o file

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
0x401040 : 0x401040 <sum>: push %ebp
0x55 0x401041 <sum+1>: mov %esp, $ebp
0x89 0x401043 <sum+3>: mov Oxc (%ebp) , $seax
0xe5 0x401046 <sum+6>: add 0x8 (%ebp) , seax
0x8b 0x401049 <sum+9>: mov %ebp, $esp
0x45 0x40104b <sum+1l1l>: pop %ebp
0x0c 0x40104c <sum+1l2>: ret
0x03 0x40104d <sum+13>: lea 0x0 (%esi) , %esi
0x45
0x08
0x89 m Within gdb Debugger
Oxec
0x5d géb P
0xc3 disassemble sum

= Disassemble procedure
x/13b sum

= Examine the 13 bytes starting at sum

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text.:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, %sebp
30001003: 6a ff push SOXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Carnegie Mellon

Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

Carnegie Mellon

Integer Registers (I1A32)

general purpose

A

—

seax %ax %ah %al
secx %cx %ch %cl
sedx $dx sdh sd1
sebx $bx $bh $bl
sesi $si
sedi sdi
sesp %sp
sebp %bp

16-bit virtual registers
(backwards compatibility)

Y

Origin
(mostly obsolete)

stack
pointer

base
pointer

Carnegie Mellon

Moving Data: IA32 Seax

$ecx

m Moving Data

" movx Source, Dest
" xin{b, w, 1}

Sedx

$ebx

$esi

= movl Source, Dest: Sedi

Move 4-byte “long word” %esp

" movw Source, Dest:

sebp

Move 2-byte “word”
" movb Source, Dest:
Move 1-byte “byte”

m Lots of these in typical code

Moving Data: IA32 Seax

m Moving Data secx
mov1l Source, Dest: Sedx

o
m Operand Types sebx
= /mmediate: Constant integer data sesi
= Example: $0x400, $-533 cadi
= Like C constant, but prefixed with *$ Yesp

= Encoded with 1, 2, or 4 bytes

sebp

= Register: One of 8 integer registers

= Example: $eax, %edx
= But $esp and %ebp reserved for special use
= Others have special uses for particular instructions
= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%$eax)

= Various other “address modes”

Carnegie Mellon

movl Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147, (%$eax) *p = -147;
movl < Reg Reg movl %eax,%edx temp2 = templ;
Mem movl %eax, (%$edx) *p = temp;

N Mem Reg movl (%eax) , %edx temp = *p;

Cannot do memory-memory transfer with a single instruction

Carnegie Mellon

Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movl 8 (%ebp) , $edx

Using Simple Addressing Modes

{

void swap (int *xp, int *yp)

int t0 = *xp;
int tl1 *yp;
*xp =
*YP

tl;
t0;

swap:
pushl
movl
pushl

movl
movl
movl
movl
movl
movl

movl
movl

popl
ret

sebp
sesp, sebp
sebx

12 (%ebp) , %ecx
8 (%3ebp) , $edx
gecx) , %eax
%$edx) , $ebx
Seax, (%edx)
%ebx, (%ecx)

-4 (%ebp) , 5ebx
%ebp, sesp
%ebp

Carnegie Mellon

>~ Finish

Using Simple Addressing Modes

swap:
void swap (int *xp, int *yp)
{ N
int t0 = *xp; movl 12 (%ebp) , $Secx
int t1 = *yp; movl 8 (%ebp) , $edx
*xp = tl; movl (%ecx), %$eax >
— +0. o N Bod
*yp = t0; movl (%edx), %$ebx y
) movl %eax, (%edx)
movl %ebx, (%ecx) y

Understanding Swap

{

void swap (int *xp, int *yp)

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;

}

Register Value

secx ypP movl

sedx Xp movl

seax tl movl

%ebx t0 movl
movl
movl

Offset
12

-4

yp

Xp

Rtn adr

Old %ebp

Carnegie Mellon

Stack
(in memory)

<+— S%ebp

Old %ebx

12 (%ebp) ,%ecx # ecx
edx =

8 (%ebp) , sedx
(%ecx) , Seax
(%edx) , $ebx
%eax, (%edx)

%ebx, (%ecx)

H* H H =

*yp

eax =
ebx =

*xp —

*yp (t1)
*xp (t0)

Carnegie Mellon

Address

Understanding Swap 123
456
seax
%edx Offset
2ecx YP 12 0x120
Xp 8 | 0x124
%$ebx
4 | Rtn adr
%esi
$ebp —» 0
Sedi ~4
sesp
movl 12 (%ebp) , %ecx # ecx = yp
%ebp| 0x104 movl 8 (%ebp) ,%edx # edx = xp
movl (%ecx), %$eax # eax = *yp
movl (%edx), %$ebx # ebx *Xp
movl %eax, (%edx) # *xp = eax
movl %$ebx, (%ecx) # *yp = ebx

0x124
0x120
Oxllc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Carnegie Mellon

Address
Understanding Swap 123 | Ox124
456 0x120
Oxllc
%eax 0x118
edx Offset 0x114
Secx| 0x120 YP 12 | 0x120 | px110
8 | 0x124
Sebx xP X 0x10c
4 Rtn adr 0x108
%esi 0
$ebp —» 0x104
$edi ~4
0x100
sesp
movl 12 (%$ebp) , %ecx # ecx = yp
%ebp| 0x104 movl 8 (%ebp) ,%edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %$ebx # ebx *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %$ebx, (%ecx) # *yp = ebx

Carnegie Mellon

Address
Understanding Swap 123 | Ox124
456 0x120
Oxllc
%eax 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 | 0x120 | ox110
8 | 0x124
%ebx *P x 0x10c
4 Rtn adr 0x108
%esi 0
$ebp —» 0x104
$edi ~4
0x100
sesp
movl 12 (%ebp) , %ecx # ecx = yp
%ebp| 0x104 movl 8 (%ebp) , %edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %$ebx # ebx *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %$ebx, (%ecx) # *yp = ebx

Understanding Swap

%eax 456
%edx| 0x124
ecx| 0x120
%ebx
%esi
edi
sesp
%ebp| 0x104

movl
movl
movl
movl
movl

movl

12 (%ebp) , $ecx
8 (%ebp) , 3edx

%ecx) ,%eax
(%edx) , $ebx
%eax, (%edx)

%$ebx, (%ecx)

123
456
Offset
ypP 12 | 0x120
Xp 8 | 0x124
4 | Rtn adr
$ebp —» 0
-4
ecx = yp
edx = xp
eax = *yp
ebx = *xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Oxllc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(t1l)
(t0)

Carnegie Mellon

. Address
Understanding Swap 123 | 0x124
456 0x120
Oxllc
%eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 | 0x120 | ox110
% ebx 123 XPp 8 0x124 O0x10c
4 Rtn adr 0x108
%esi 0
%ebp —> 0x104
$edi ~4
0x100
sesp
movl 12 (%ebp) , %ecx # ecx = yp
%ebp| 0x104 movl 8 (%ebp) ,%edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %$ebx # ebx = *xp (tO0)
movl %eax, (%edx) # *xp = eax
movl %$ebx, (%ecx) # *yp = ebx

Carnegie Mellon

Address
Understanding Swap 456 | 0x124
456 0x120
Oxllc
%eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 | 0x120 | ox110
% ebx 123 XPp 8 0x124 O0x10c
4 Rtn adr 0x108
%esi 0
%ebp —> 0x104
$edi ~4
0x100
sesp
movl 12 (%ebp) , %ecx # ecx = yp
%ebp| 0x104 movl 8 (%ebp) ,%edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %$ebx # ebx = *xp (tO0)
movl %eax, (%edx) # *xp = eax
movl %$ebx, (%ecx) # *yp = ebx

Carnegie Mellon

Address
Understanding Swap 456 | 0x124
123 0x120
Oxllc
%eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 | 0x120 | ox110
% ebx 123 XPp 8 0x124 O0x10c
4 Rtn adr 0x108
%esi 0
%ebp —> 0x104
$edi ~4
0x100
sesp
movl 12 (%ebp) , %ecx # ecx = yp
%ebp| 0x104 movl 8 (%ebp) ,%edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %$ebx # ebx = *xp (tO0)
movl %eax, (%edx) # *xp = eax
movl %$ebx, (%ecx) # *yp = ebx

Carnegie Mellon

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

= D: Constant “displacement” 1, 2, or 4 bytes

Rb: Base register: Any of 8 integer registers

Ri: Index register: Any, except for $esp
= Unlikely you’d use %ebp, either
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg|[Ri]]
D(Rb,Ri) Mem|[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg|[Ri]]

