15-213/18-243, Fall 2009

Carnegie Mellon Carnegie Mellon

Last Time: Floating Point

Fractional binary numbers
IEEE floating point standard: Definition
Example and properties

Introduction to Computer Systems
15-213/18-243, fall 2009
4th L ecture, Sep. 3¢

Rounding, addition, multiplication

Floating pointin C

= Summary
Instructors:

Roger B. Dannenberg and Greg Ganger

Carnegie Mellon Carnegie Mellon

Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code
m Assembly Basics: Registers, operands, move

Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

= 8086 1978 29K 5-10

= First 16-bit processor. Basis for IBM PC & DOS

= 1MB address space
= 386 1985 275K 16-33

= First 32 bit processor , referred to as 1A32

= Added “flat addressing”

= Capable of running Unix

= 32-bit Linux/gcc uses no instructions introduced in later models
= Pentium 4F 2005 230M 2800-3800

= First 64-bit processor

= Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of
“Core” line

Intel x86 Processors

= Totally dominate computer market

= Evolutionary design
= Backwards compatible back to 8086, introduced in 1978
= Added more features as time goes on

= Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

® Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

Carnegie Mellon

Intel x86 Processors: Overview

X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium IlI
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Core i7

IA: often redefined as latest Intel architecture

15-213/18-243, Fall 2009

Intel x86 Processors, contd.

= Machine Evolution

= 486 1989 1.9M
® Pentium 1993 3.1M
= Pentium/MMX 1997 4.5M
® PentiumPro 1995 6.5M
= Pentium IlI 1999 8.2M
® Pentium 4 2001 42M

= Core 2 Duo 2006 291M

m Added Features
= Instructions to support multimedia operations
= Parallel operations on 1, 2, and 4-byte data, both integer & FP
= Instructions to enable more efficient conditional operations
= Linux/GCC Evolution
= Very limited

New Species: iab4, then IPF, then Itanium,...

Name Date Transistors
= Itanium 2001 10mM
= First shot at 64-bit architecture: first called 1A64
= Radically new instruction set designed for high performance
® Can run existing IA32 programs
= On-board “x86 engine”
= Joint project with Hewlett-Packard

= Itanium 2 2002 221M
= Big performance boost
= Itanium 2 Dual-Core 2006 1.78

= Itanium has not taken off in marketplace

= Lack of backward compatibility, no good compiler support, Pentium
4 got too good

Carnegie Mellon

Intel’s 64-Bit
= Intel Attempted Radical Shift from 1A32 to 1A64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing
= AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)
= Intel Felt Obligated to Focus on I1A64
= Hard to admit mistake or that AMD is better
= 2004: Intel Announces EM64T extension to 1A32
= Extended Memory 64-bit Technology
= Almost identical to x86-64!
= Our Saltwater fish machines
= Meanwhile: EM64t well introduced,
however, still often not used by OS, programs

More Information

= Intel processors (Wikipedia)
= Intel microarchitectures

Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

u Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4

= Developed x86-64, their own extension to 64 bits
= Recently

= Intel much quicker with dual core design

= Intel currently far ahead in performance

= em64t backwards compatible to x86-64

Our Coverage

= |A32
= The traditional x86

= x86-64/EM64T

= The emerging standard

= Presentation
= Book has IA32
= Handout has x86-64
= Lecture will cover both

15-213/18-243, Fall 2009

Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code
m Assembly Basics: Registers, operands, move

Definitions

m Architecture: (also instruction set architecture: ISA) The
parts of a processor design that one needs to understand
to write assembly code.

m Microarchitecture: Implementation of the architecture.

m Architecture examples: instruction set specification,
registers.

m Microarchitecture examples: cache sizes and core
frequency.

= Example ISAs (Intel): x86, IA, IPF

Turning C into Object Code

= Code in files pl.c p2.c

= Compile with command: gcc -0 pl.c p2.c -0 p
= Use optimizations (-0)
= Put resulting binary in filep

text | Cprogram (pl.c p2.c) |

Compiler (gcc -8)

text | Asm program (pl.s p2.s) |

Assembler (gcc or as)

Static libraries

v
binary | Object program (p1.0 p2.0) |
(.a)

Linker (gcc or 1d)

A

13 |
[
Assembly Programmer’s View
Memory
Addresses
Registers Object Code
Data Program Data
. OS Data
Instructions
Stack
= Programmer-Visible State
= PC: Program counter
= Address of next instruction
= Called “EIP” (1A32) or “RIP” (x86-64)
= Register file
= Heavily used program data * Memory
= Condition codes = Byte addressable array
» Store status information about most * Code, user data, (some) OS data
recent arithmetic operation = Includes stack used to support
» Used for conditional branching procedures
15 |

Compiling Into Assembly

C Code Generated I1A32 Assembly
int sum(int x, int y) sum:
{ pushl $ebp
int t = x+y; movl $esp,%ebp
return t; movl 12 (%ebp) , %eax
} addl 8(%ebp) ,%eax
movl %$ebp, %$esp
{popl %ebp
ret

Obtain with command
-0 -8 Some compilers use single

gce : o w ”
instruction “leave

code.c

Produces file code . s

binary |

Executable program (p)

Carnegie Mellon

Assembly Characteristics: Data Types

= “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

= No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

15-213/18-243, Fall 2009

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
= Load data from memory into register
= Store register data into memory

= Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

Carnegie Mellon

Machine Instruction Example
u C Code
= Add two signed integers
m Assembly
= Add 2 4-byte integers
‘ = “Long” words in GCC parlance

int t = x+y;
\ y |

‘ addl 8 (%ebp) ,%eax

Similar to expression: = Same instruction whether signed

x += y or unsigned
More precisely: = Operands:
int eax; x: Register %eax
int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] t: Register %eax

—Return function value in $eax
= Object Code
= 3-byte instruction
= Stored at address 0x401046

0x401046: 03 45 08

Carnegie Mellon

Alternate Disassembly
. Disassembled
Object
0x401040: 0x401040 <sum>: push %ebp

0x55 0x401041 <sum+1>: mov %esp, $ebp
0x89 0x401043 <sum+3>: mov Oxc (%ebp) , %$eax
0xe5 0x401046 <sum+6>: add 0x8 (%ebp) , $eax
0x8b 0x401049 <sum+9>: mov %ebp, $esp
0x45 0x40104b <sum+ll>: pop %ebp
0x0c 0x40104c <sum+12>: ret
0x03 0x40104d <sum+13>: lea 0x0 (%esi) , %esi
0x45
0x08
0x89 = Within gdb Debugger
Oxec db
0x5d g_ P
0xc3 disassemble sum

= Disassemble procedure

x/13b sum

= Examine the 13 bytes starting at sum

[2; |

Object Code

Code for sum
m Assembler

0x401040 <sum>: .
= Translates . s into .o

0x55

0x89 = Binary encoding of each instruction

Oxe5 = Nearly-complete image of executable code
g:zls) = Missing linkages between code in different
0x0¢c files

0x03 m Linker

gig: = Resolves references between files

oxse ot of 13 bytes = Combines with static run-time libraries

Oxec ° Eazh::s;';‘x;:" = E.g., codeformalloc, printf
0x5d r &

0xc3 o Starts at address = Some libraries are dynamically linked

0x401040 = Linking occurs when program begins
execution

Disassembling Object Code

Disassembled

00401040 <_sum>:
0: 55 push %ebp
3 89 e5 mov %esp, $ebp
3: 8b 45 Oc mov Oxc (%ebp) , $eax
6: 03 45 08 add 0x8 (%ebp) , $eax
9: 89 ec mov %ebp, $esp
b: 5d pop %ebp
@8 c3 ret
d: 8d 76 00 lea 0x0 (%esi) , $esi

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
= Produces approximate rendition of assembly code
= Can be run on either a . out (complete executable) or . o file

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, $ebp
30001003: 6a ff push SOxfEEFFEEF

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Anything that can be interpreted as executable code
= Disassembler examines bytes and reconstructs assembly source

15-213/18-243, Fall 2009

Carnegie Mellon

Machine Programming I: Basics

m Assembly Basics: Registers, operands, move

Carnegie Mellon

Moving Data: I1A32

= Moving Data
" movx Source, Dest
= xin{b, w, 1}

mov1l Source, Dest:
Move 4-byte “long word”

movw Source, Dest:
Move 2-byte “word”

movb Source, Dest:
Move 1-byte “byte”

m Lots of these in typical code

%eax

%

dx
$ebx
$esi

%edi

%esp

%ebp

Carnegie Mellon

Source Dest
Reg movl
Imm
Mem movl

movl Reg Reg movl

Mem movl

Mem Reg movl

movl Operand Combinations

Src,Dest

$0x4, %eax
$-147, (%eax)

%eax, $edx
%eax, (%edx)

(%eax) , %edx

Cannot do memory-memory transfer with a single instruction

C Analog
temp = 0x4;
*p = -147;

temp2 = templ;
*p = temp;

temp = *p;

Carnegie Mellon

Integer Registers (1A32) Origin
(mostly obsolete)
’l $eax sax[%anh | sal |
° | %ecx %cx %ch gcl
g
£ | $edx sdx[sdn | sdl |
2 4
g | %$ebx sbx| sbh | sp1 |
g
| %esi %si | [
| %edi %di | [
- stack
| %esp < \—l pointer
base
| %ebp sbp ‘ | pointer
16-bit virtual registers
(backwards compatibility) "2 |

Carnegie Mellon

Moving Data: 1A32
= Moving Data
mov1l Source, Dest:
= Operand Types
= Immediate: Constant integer data

= Example: $0x400, $-533 %edi

= Like C constant, but prefixed with *$’ %esp

= Encoded with 1, 2, or 4 bytes
%ebp

= Register: One of 8 integer registers
= Example: $eax, %edx
= But $esp and %$ebp reserved for special use
= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%$eax)
= Various other “address modes”

Carnegie Mellon

Simple Memory Addressing Modes

= Normal (R) Mem|[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

= Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region

= Constant displacement D specifies offset

movl 8 (%ebp) , %edx

15-213/18-243, Fall 2009

Using Simple Addressing Modes Using Simple Addressing Modes
swap: swap:
pushl %$ebp
movl $%esp, %$ebp Set
void swap(int *xp, int *yp) pushl %ebx Up void swap(int *xp, int *yp)
{
int t0 = *xp; movl 12 (%ebp) ,%ecx int t0 = *xp; movl 12 (%ebp) ,%ecx
int tl = *yp; movl 8 (%ebp) ,%edx int tl1 = *yp; movl 8 (%ebp),%edx
*xp = t1; movl (%ecx),%eax *xp = t1; movl (%ecx),%eax
- t0; Bod - t0; ! Bod
*yp = t0; movl (%$edx), %ebx \l *yp = t0; movl (%edx),%ebx \l
} movl %eax, (%$edx) } movl %eax, (%edx)
movl %ebx, (%$ecx) movl %ebx, (%ecx)
movl -4 (%ebp) ,%ebx
movl %ebp, %esp -
popl %ebp Finish
ret
o2
. . Address
Understanding Swap Understanding Swap 123 | ox124
456 0x120
void swap(int *xp, int *yp) ° Stack Oxllc
.
{ o .
int t0 = *xp; Offset Offset
int t1 = *yp; tea] | 0x114
* = ;
) yp = t0; 8 xp obn xp 8 | 0x124 | gx10c
4 | Rtnadr 4 | Rtn adr 0x108
%esi
0 |0Old %ebp[¢— %ebp = %ebp —» 0 0x104
-4 [old %ebx sedi -4
Register Value 0x100
%ecx yYP movl 12 (%ebp) ,%ecx # ecx = yp movl 12 (%ebp) ,%ecx # ecx = yp
$edx xp movl 8(%ebp),%edx # edx = xp %ebP movl 8 (%ebp) ,%edx # edx = xp
%eax tl movl (%ecx),%eax # eax = *yp (tl1) movl (%ecx) , %eax # eax = *yp (tl)
%ebx to movl (%edx),%ebx # ebx = *xp (t0) movl (%edx) ,%ebx # ebx = *xp (t0)
movl $eax, (%edx) # *xp = eax movl %eax, (%edx) # *xp = eax
movl $ebx, (%ecx) # *yp = ebx movl %ebx, (%ecx) # *yp = ebx
33 | 34 |
. Address . Address
Understanding Swap 123 | oxi2a Understanding Swap 123 | oxi2a
456 0x120 456 0x120
Ox1llc Ox1llc

%ea:

ox118 [] ox118
e 12 | 0x120 | ox110 [#ecx] ox120 P 12 [0x120 | gx110

Offset

o0
o

xp 8 [ox124 | ox10c P *p 8 [0x124 | gy10c
4 | Rtnadr 0x108 os 4 | Rtn adr 0x108
sebp —» 0 0x104 sebp —» 0 0x104
—4 %edi -4
0x100 0x100
movl 12 (%ebp) ,%ecx # ecx = yp movl 12 (%ebp),%ecx # ecx = yp
movl 8(%ebp) ,%edx # edx = xp 0x104 movl 8(%ebp) ,%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl) movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0) movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx movl %ebx, (%ecx) # *yp = ebx

15-213/18-243, Fall 2009

. Address . Address
Understanding Swap 123 | oxi2a Understanding Swap 123 | ox124
456 0x120 456 0x120
Ox1llc Ox1llc
0x118 0x118
Offset ox114 Offset ox114
¥P 12 [0x120 | ox110 [vecx] ox120 ¥P 12 [0x120 | ox110
xp 8 [0x124 | gx10c P 2 xp 8 [0x124 | gx10c
4 | Rtnadr 0x108 4 | Rtn adr 0x108
0 %esi 0
%ebp —> 0x104 %ebp —> 0x104
-4 0x100 -4 0x100
movl 12 (%ebp) ,%ecx # ecx = yp movl 12 (%ebp) ,%ecx # ecx = yp
movl 8 (%ebp),%edx # edx = xp movl 8 (%ebp) ,%edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl1) movl (%ecx),%eax # eax = *yp (tl)
movl (%edx) ,%ebx # ebx = *xp (t0) movl (%edx) ,%ebx # ebx = *xp (t0)
movl %eax, ($edx) # *xp = eax movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx movl %ebx, (%ecx) # *yp = ebx
[33 |
. Address . Address
Understanding Swap 456 | ox124 Understanding Swap 456 | ox12a
456 0x120 123 0x120
Ox1llc Ox1llc
ox11s ox11s
%edx| 0x124 Offset 0x114 %edx| 0x124 Offset 0x114
[vecx] ox120 ¥P 12 10x120 [ox110 [vecx] ox120 ¥P 12 [0x120 | ox110
8 8
$ebx| 123 *® 0x124 | ox10c $ebx| 123 *® 0x124 | ox10c
4 | Rtnadr 0x108 4 | Rtn adr 0x108
%esi 0 %esi 0
%ebp —> 0x104 %ebp —> 0x104
%$edi -4 %$edi -4
0x100 0x100
movl 12 (%ebp) ,%ecx # ecx = yp - movl 12(%ebp) ,%ecx # ecx = yp
%ebp| 0x104 movl 8 (%ebp) ,%edx # edx = xp %ebp| 0x104 movl 8 (%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl) movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0) movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%$edx) # *xp = eax movl %eax, (%edx) # *xp = eax
movl %ebx, ($ecx) # *yp = ebx movl %ebx, (%$ecx) # *yp = ebx
[39 | 40 |

Carnegie Mellon

Complete Memory Addressing Modes

= Most General Form
D(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for $esp
= Unlikely you’d use %ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem|[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem|[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]]

