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Last Time: Integers

m Representation: unsigned and signed
m Conversion, casting
= Bit representation maintained but reinterpreted
m Expanding, truncating
®" Truncating = mod
m Addition, negation, multiplication, shifting
= (QOperations are mod 2%
m Ordering properties do not hold

" u>0doesnotmeanu+v>yv

" y,v>0doesnotmeanu-v>0



Today: Floating Point

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating point in C

Summary
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Fractional binary numbers

= What is 1023.405,?

= Whatis 1011.101,?
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Fractional Binary Numbers
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m Representation

= Bits to right of “binary point” represent fractional powers of 2
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= Represents rational number:
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Fractional Binary Numbers: Examples

m Value Representation
5-3/4 101.11,
2-7/8 10.111,
63/64 0.111111,

m Observations

= Divide by 2 by shifting right

= Multiply by 2 by shifting left

= Compare to shifting decimal numbers right or left

= Numbers of form 0.111111..., are just below 1.0
=1/2+1/4+1/8+..+1/2+..—= 1.0
= Compare to 0.9999...,,— 1.0
= Use notation 1.0—¢
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Representable Numbers

m Limitation
= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

m Value Representation
1/3 0.0101010101[01]..,
1/5 0.001100110011[0011]..,
1/10 0.0001100110011[0011]..,

m Observation
= 0.1,,has no finite exact binary representation!
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Today: Floating Point

IEEE floating point standard: Definition



Carnegie Mellon

IEEE Floating Point

m |EEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
" Nice standards for rounding, overflow, underflow
®" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard



Floating Point Representation

m Numerical Form:
(1)) M 2E
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s|exp frac
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Precisions

m Single precision: 32 bits

s | exp frac
1 8 23

m Double precision: 64 bits

s|exp frac
1 11 52

m Extended precision: 80 bits (Intel only)

S| exp frac
1 15 63 or 64
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Normalized Values

m Condition: exp = 000...0and exp=111..1

m Exponent coded as biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bigs = 2¢1 -1, where e is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.=xxx...x,
" xxx...X: bits of frac
=" Minimum when 000...0 (M =1.0)
" Maximum when 111..1 (M =2.0-¢)
= Why does M range from 1 to 2-? Why not O to 1-?
= Get extra leading bit for “free”
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Normalized Encoding Example

m Value: Float F = 15213.0;
u 1521310 = 111011011011012
= 1.11011011011012 x 213

m Significand
M = 1.1101101101101,
frac= 11011011011010000000000,
m Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
m Result:
0{(10001100{/11011011011010000000000
S exp frac
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Denormalized Values

m Condition: exp =000...0

m Exponent value: E = 1 - Bias (instead of E = 0 — Bias)

m Significand coded with implied leading 0: M = 0 . xxx...x,
= xXxX..X: bits of frac

m Cases
" exp=000..0,frac=000..0
= Represents value 0
= Note distinct values: +0 and -0 (why?)
" exp=000..0, frac=000..0
= Numbers very close to 0.0
= Lose precision as get smaller
= Equispaced
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Special Values

m Condition:exp=111...1

m Case:exp=111..1, frac=000..0

= Represents value ®© (infinity)
® QOperation that overflows

= Both positive and negative

= E.g.,h 1.0/0.0=-1.0/-0.0=+%, 1.0/-0.0 = -

m Case: exp=111..1, frac=000..0
= Not-a-Number (NaN)

= Represents case when no numeric value can be determined
= E.g.,sqgrt(—1), 0 -, ©*x(
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Visualization: Floating Point Encodings

-Normalized | -Denorm : | :+Denorm; +Normalized |
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Today: Floating Point

Example and properties
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Tiny Floating Point Example

S| exp frac
1 4 3

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

m Same general form as IEEE Format
®" normalized, denormalized
= representation of 0, NaN, infinity
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Is 8-bit Float Just an Example?

S| exp frac
1 3 4

m ulaw Audio Representation
= An 8-bit float used for digital telephony in North America/Japan

m We'll hear some examples later

m Small floats also used in GPUs!



Dynamic Range (Positive Only)

s exp frac E Value
0O 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0O 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
, 0 0110 111 -1 15/8*1/2 = 15/16 closestto 1 below
Normalized 5177 900 o0 8/8%1 =1
umbers 0 0111 001 0O 9/8*1 = 9/8  closest to 1 above
0O 0111 010 0 10/8*1 = 10/8
0O 1110 110 7 14/8*%128 = 224
0 1110 111 7 15/8*%128 = 240 largest norm
0O 1111 o000 n/a inf



Carnegie Mellon

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits S| eXp frac
= f=2 fraction bits 1 3 2
" Biasis231-1=3

m Notice how the distribution gets denser toward zero.

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity
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Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
= {=2fraction bits 1 3 2
" Biasis3

s|exp frac

-1 -0.5 0 0.5 1
& Denormalized A Normalized B Infinity
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Sound Examples

m Floats are more precise near zero

-—_— Y e
-15 -10 -5 0 3)
¢ Denormalized A Normalized  Infinity

m Fixed-point numbers quantize uniformly throughout their
range

10

15

-15

-10

10

15
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Interesting Numbers {single,double}
Description exp frac Numeric Value

m Zero 00..00 00...00 0.0

m Smallest Pos. Denorm. 00...00 00...01 2~ 123,52} i 9~ 1126,1022)

" Single=1.4x 107
" Double = 4.9 x 107324
m Largest Denormalized 00..00 11..11 (1.0 — ¢) x 2~ {126,1022}
" Single =~ 1.18 x 10738
" Double = 2.2 x 107308

m Smallest Pos. Normalized 00...01 00...00 1.0 x 2~ {126,2022}
= Just larger than largest denormalized

m One 01..11 00...00 1.0

m Largest Normalized 11..10 11..11 (2.0 — ¢) x 2{127,1023}

= Single = 3.4 x 1038
" Double = 1.8 x 10308
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Special Properties of Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider-0=0
"= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
=  QOtherwise OK
= Denorm vs. normalized

= Normalized vs. infinity
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Today: Floating Point

Rounding, addition, multiplication
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Floating Point Operations: Basic Idea

mX +, y = Round(x + y)

B X xx Y = Round(x x y)

m Basicidea
" First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £rac



Rounding

= Rounding Modes (illustrate with S rounding)

$1.40
= Towards zero S1
= Round down (-o) S1
= Round up (+x) S2
= Nearest Even (default) S1

$1.60

S1
S1
$2
$2

$1.50
S1
51
S2
S2

m What are the advantages of the modes?

$2.50
52
52
S3
52
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-$1.50
—Sl
_$2
—Sl
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Closer Look at Round-To-Even

m Default Rounding Mode
" Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

= E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
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Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is O
= “Half way” when bits to right of rounding position = 100...,

m Examples
= Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded  Action Rounded Value
2 3/32 10.00011, 10.00, (<1/2—down) 2

2 3/16 10.00110, 10.01, (>1/2—up) 21/4

27/8 10.11100, 11.00, ( 1/2—up) 3

25/8 10.10100, 10.10, ( 1/2—down)  21/2



FP Multiplication

(-1)52 M1 2E1 x (-1)2 M2 2E2
m Exact Result: (-1)° M 2f

= Signs: s1NMNs2

= Significand M: M1 * M2

" Exponent E: E1+E2
m Fixing

= |f M2 2, shift Mright, increment E
= |f E out of range, overflow
= Round M to fit £rac precision

= Implementation
= Biggest chore is multiplying significands



Floating Point Addition

(-1)st M1 2E1 + (-1)52 M2 2F2
Assume E1 > E2

|€&— E1-£2 — P
m Exact Result: (-1)s M 2f (=1)* M1
= Sign s, significand M: . (-1)2 M2
= Result of signed align & add
" Exponent E: El (-1)* ™M
m Fixing

= |If M 22, shift M right, increment E

= if M <1, shift M left k positions, decrement E by k
= Qverflow if E out of range

= Round M to fit £rac precision
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Mathematical Properties of FP Add

m Compare to those of Abelian Group
= Closed under addition?
= But may generate infinity or NaN
= Commutative?
= Associative?
= Overflow and inexactness of rounding
0 is additive identity?
= Every element has additive inverse

= Except for infinities & NaNs
m Monotonicity
" g2 b= ag+c 2 b+c?
= Except for infinities & NaNs

Yes

Yes
No

Yes
Almost

Almost
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Mathematical Properties of FP Mult

m Compare to Commutative Ring
" Closed under multiplication? Yes
= But may generate infinity or NaN

" Multiplication Commutative? Yes

" Multiplication is Associative? No
= Possibility of overflow, inexactness of rounding

= 1 is multiplicative identity? Yes

= Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding

m Monotonicity
"gz2b &c=2 0 =a*cz2b*c? Almost
= Except for infinities & NaNs



Carnegie Mellon

Today: Floating Point

Floating point in C
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Floating Point in C

m C Guarantees Two Levels
float single precision
double double precision

m Conversions/Casting
= Casting between int, £loat, and double changes bit representation
" Double/float — int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
" int 2 double
= Exact conversion, as long as int has < 53 bit word size
" int 2 float

= Will round according to rounding mode



Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true

* x == (int) (float) x
* x == (int) (double) x
int x = ..; £ == (float) (double) £
float £ = ..; * d == (float) d
double d = ..; * £ = -(-£);
Assume neither ©2/3 ==2/3.0
d nor £ is NaN + d<O0.0 = ((d*2) < 0.0)
- d>f = -£f > -d

d *xd > 0.0

(d+£) -d ==
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Today: Floating Point

Summary
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Summary

m |EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers



More Slides



Creating Floating Point Number

m Steps 76 3 2 0
" Normalize to have leading 1 s|exp frac
= Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format

= Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011
138 10001010
63 00111111
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Normalize
7 6 3 2 0
s | exp frac

m Requirement
= Set binary point so that numbers of form 1.xxxxx
= Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent

128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 5
19 00010011 1.0011000 5
138 10001010 1.0001010 7
63 00111111 1.1111100 5
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Rounding
1 . BBGRXXX

Guard bit: LSB of result

T Sticky bit: OR of remaining bits
Round bit: 1°t bit removed Y g

= Round up conditions
* Round =1, Sticky=1=>>0.5
= Guard =1, Round = 1, Sticky = 0 = Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 OO* N 1.000
15 1.1010000 10%* N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000
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Postnormalize

m Issue
= Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15

17 1.000 4 16

19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64



