Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, fall 2009
3"d Lecture, Sep. 15t

Instructors:
Roger B. Dannenberg and Greg Ganger

Carnegie Mellon

Last Time: Integers

m Representation: unsigned and signed
m Conversion, casting
= Bit representation maintained but reinterpreted
m Expanding, truncating
®" Truncating = mod
m Addition, negation, multiplication, shifting
= (QOperations are mod 2%
m Ordering properties do not hold

" u>0doesnotmeanu+v>yv

" y,v>0doesnotmeanu-v>0

Today: Floating Point

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating point in C

Summary

Carnegie Mellon

Fractional binary numbers

= What is 1023.405,?

= Whatis 1011.101,?

Carnegie Mellon

Fractional Binary Numbers

i
Ni-1

b,b_see by b byeb b, b, eee b

1/2 J

1/4 00
1/8

7
m Representation

= Bits to right of “binary point” represent fractional powers of 2

ibk-z"
oy

= Represents rational number:

Carnegie Mellon

Fractional Binary Numbers: Examples

m Value Representation
5-3/4 101.11,
2-7/8 10.111,
63/64 0.111111,

m Observations

= Divide by 2 by shifting right

= Multiply by 2 by shifting left

= Compare to shifting decimal numbers right or left

= Numbers of form 0.111111..., are just below 1.0
=1/2+1/4+1/8+..+1/2+..—= 1.0
= Compare to 0.9999...,,— 1.0
= Use notation 1.0—¢

Carnegie Mellon

Representable Numbers

m Limitation
= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

m Value Representation
1/3 0.0101010101[01]..,
1/5 0.001100110011[0011]..,
1/10 0.0001100110011[0011]..,

m Observation
= 0.1,,has no finite exact binary representation!

Carnegie Mellon

Today: Floating Point

IEEE floating point standard: Definition

Carnegie Mellon

IEEE Floating Point

m |EEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
" Nice standards for rounding, overflow, underflow
®" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard

Floating Point Representation

m Numerical Form:
(1)) M 2E
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s|exp frac

Carnegie Mellon

Precisions

m Single precision: 32 bits

s | exp frac
1 8 23

m Double precision: 64 bits

s|exp frac
1 11 52

m Extended precision: 80 bits (Intel only)

S| exp frac
1 15 63 or 64

Carnegie Mellon

Normalized Values

m Condition: exp = 000...0and exp=111..1

m Exponent coded as biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bigs = 2¢1 -1, where e is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.=xxx...x,
" xxx...X: bits of frac
=" Minimum when 000...0 (M =1.0)
" Maximum when 111..1 (M =2.0-¢)
= Why does M range from 1 to 2-? Why not O to 1-?
= Get extra leading bit for “free”

Carnegie Mellon

Normalized Encoding Example

m Value: Float F = 15213.0;
u 1521310 = 111011011011012
= 1.11011011011012 x 213

m Significand
M = 1.1101101101101,
frac= 11011011011010000000000,
m Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
m Result:
0{(10001100{/11011011011010000000000
S exp frac

Carnegie Mellon

Denormalized Values

m Condition: exp =000...0

m Exponent value: E = 1 - Bias (instead of E = 0 — Bias)

m Significand coded with implied leading 0: M = 0 . xxx...x,
= xXxX..X: bits of frac

m Cases
" exp=000..0,frac=000..0
= Represents value 0
= Note distinct values: +0 and -0 (why?)
" exp=000..0, frac=000..0
= Numbers very close to 0.0
= Lose precision as get smaller
= Equispaced

Carnegie Mellon

Special Values

m Condition:exp=111...1

m Case:exp=111..1, frac=000..0

= Represents value ®© (infinity)
® QOperation that overflows

= Both positive and negative

= E.g.,h 1.0/0.0=-1.0/-0.0=+%, 1.0/-0.0 = -

m Case: exp=111..1, frac=000..0
= Not-a-Number (NaN)

= Represents case when no numeric value can be determined
= E.g.,sqgrt(—1), 0 -, ©*x(

Carnegie Mellon

Visualization: Floating Point Encodings

-Normalized | -Denorm : | :+Denorm; +Normalized |

I I /I\ I I -~

ﬁ -0 +0 —

Carnegie Mellon

Today: Floating Point

Example and properties

Carnegie Mellon

Tiny Floating Point Example

S| exp frac
1 4 3

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

m Same general form as IEEE Format
®" normalized, denormalized
= representation of 0, NaN, infinity

Carnegie Mellon

Is 8-bit Float Just an Example?

S| exp frac
1 3 4

m ulaw Audio Representation
= An 8-bit float used for digital telephony in North America/Japan

m We'll hear some examples later

m Small floats also used in GPUs!

Dynamic Range (Positive Only)

s exp frac E Value
0O 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0O 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
, 0 0110 111 -1 15/8*1/2 = 15/16 closestto 1 below
Normalized 5177 900 o0 8/8%1 =1
umbers 0 0111 001 0O 9/8*1 = 9/8 closest to 1 above
0O 0111 010 0 10/8*1 = 10/8
0O 1110 110 7 14/8*%128 = 224
0 1110 111 7 15/8*%128 = 240 largest norm
0O 1111 o000 n/a inf

Carnegie Mellon

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits S| eXp frac
= f=2 fraction bits 1 3 2
" Biasis231-1=3

m Notice how the distribution gets denser toward zero.

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

Carnegie Mellon

Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
= {=2fraction bits 1 3 2
" Biasis3

s|exp frac

-1 -0.5 0 0.5 1
& Denormalized A Normalized B Infinity

Carnegie Mellon

Sound Examples

m Floats are more precise near zero

-—_— Y e
-15 -10 -5 0 3)
¢ Denormalized A Normalized Infinity

m Fixed-point numbers quantize uniformly throughout their
range

10

15

-15

-10

10

15

Carnegie Mellon

Interesting Numbers {single,double}
Description exp frac Numeric Value

m Zero 00..00 00...00 0.0

m Smallest Pos. Denorm. 00...00 00...01 2~ 123,52} i 9~ 1126,1022)

" Single=1.4x 107
" Double = 4.9 x 107324
m Largest Denormalized 00..00 11..11 (1.0 — ¢) x 2~ {126,1022}
" Single =~ 1.18 x 10738
" Double = 2.2 x 107308

m Smallest Pos. Normalized 00...01 00...00 1.0 x 2~ {126,2022}
= Just larger than largest denormalized

m One 01..11 00...00 1.0

m Largest Normalized 11..10 11..11 (2.0 — ¢) x 2{127,1023}

= Single = 3.4 x 1038
" Double = 1.8 x 10308

Carnegie Mellon

Special Properties of Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider-0=0
"= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= QOtherwise OK
= Denorm vs. normalized

= Normalized vs. infinity

Carnegie Mellon

Today: Floating Point

Rounding, addition, multiplication

Carnegie Mellon

Floating Point Operations: Basic Idea

mX +, y = Round(x + y)

B X xx Y = Round(x x y)

m Basicidea
" First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £rac

Rounding

= Rounding Modes (illustrate with S rounding)

$1.40
= Towards zero S1
= Round down (-o) S1
= Round up (+x) S2
= Nearest Even (default) S1

$1.60

S1
S1
$2
$2

$1.50
S1
51
S2
S2

m What are the advantages of the modes?

$2.50
52
52
S3
52

Carnegie Mellon

-$1.50
—Sl
_$2
—Sl

Carnegie Mellon

Closer Look at Round-To-Even

m Default Rounding Mode
" Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

= E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

Carnegie Mellon

Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is O
= “Half way” when bits to right of rounding position = 100...,

m Examples
= Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value
2 3/32 10.00011, 10.00, (<1/2—down) 2

2 3/16 10.00110, 10.01, (>1/2—up) 21/4

27/8 10.11100, 11.00, (1/2—up) 3

25/8 10.10100, 10.10, (1/2—down) 21/2

FP Multiplication

(-1)52 M1 2E1 x (-1)2 M2 2E2
m Exact Result: (-1)° M 2f

= Signs: s1NMNs2

= Significand M: M1 * M2

" Exponent E: E1+E2
m Fixing

= |f M2 2, shift Mright, increment E
= |f E out of range, overflow
= Round M to fit £rac precision

= Implementation
= Biggest chore is multiplying significands

Floating Point Addition

(-1)st M1 2E1 + (-1)52 M2 2F2
Assume E1 > E2

|€&— E1-£2 — P
m Exact Result: (-1)s M 2f (=1)* M1
= Sign s, significand M: . (-1)2 M2
= Result of signed align & add
" Exponent E: El (-1)* ™M
m Fixing

= |If M 22, shift M right, increment E

= if M <1, shift M left k positions, decrement E by k
= Qverflow if E out of range

= Round M to fit £rac precision

Carnegie Mellon

Mathematical Properties of FP Add

m Compare to those of Abelian Group
= Closed under addition?
= But may generate infinity or NaN
= Commutative?
= Associative?
= Overflow and inexactness of rounding
0 is additive identity?
= Every element has additive inverse

= Except for infinities & NaNs
m Monotonicity
" g2 b= ag+c 2 b+c?
= Except for infinities & NaNs

Yes

Yes
No

Yes
Almost

Almost

Carnegie Mellon

Mathematical Properties of FP Mult

m Compare to Commutative Ring
" Closed under multiplication? Yes
= But may generate infinity or NaN

" Multiplication Commutative? Yes

" Multiplication is Associative? No
= Possibility of overflow, inexactness of rounding

= 1 is multiplicative identity? Yes

= Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding

m Monotonicity
"gz2b &c=2 0 =a*cz2b*c? Almost
= Except for infinities & NaNs

Carnegie Mellon

Today: Floating Point

Floating point in C

Carnegie Mellon

Floating Point in C

m C Guarantees Two Levels
float single precision
double double precision

m Conversions/Casting
= Casting between int, £loat, and double changes bit representation
" Double/float — int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
" int 2 double
= Exact conversion, as long as int has < 53 bit word size
" int 2 float

= Will round according to rounding mode

Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true

* x == (int) (float) x
* x == (int) (double) x
int x = ..; £ == (float) (double) £
float £ = ..; * d == (float) d
double d = ..; * £ = -(-£);
Assume neither ©2/3 ==2/3.0
d nor £ is NaN + d<O0.0 = ((d*2) < 0.0)
- d>f = -£f > -d

d *xd > 0.0

(d+£) -d ==

Carnegie Mellon

Today: Floating Point

Summary

Carnegie Mellon

Summary

m |EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

More Slides

Creating Floating Point Number

m Steps 76 3 2 0
" Normalize to have leading 1 s|exp frac
= Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format

= Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011
138 10001010
63 00111111

Carnegie Mellon

Normalize
7 6 3 2 0
s | exp frac

m Requirement
= Set binary point so that numbers of form 1.xxxxx
= Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent

128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 5
19 00010011 1.0011000 5
138 10001010 1.0001010 7
63 00111111 1.1111100 5

Carnegie Mellon

Rounding
1 . BBGRXXX

Guard bit: LSB of result

T Sticky bit: OR of remaining bits
Round bit: 1°t bit removed Y g

= Round up conditions
* Round =1, Sticky=1=>>0.5
= Guard =1, Round = 1, Sticky = 0 = Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 OO* N 1.000
15 1.1010000 10%* N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

Carnegie Mellon

Postnormalize

m Issue
= Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15

17 1.000 4 16

19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64

