15-213/18-243, Fall 2009

Carnegie Mellon Carnegie Mellon

Last Time: Integers

= Representation: unsigned and signed

Introduction to Computer Systems = Conversion, casting ,
15-213/18-243, fall 2009 = Bit representation maintained but reinterpreted
3rd Lecture, Sep. 1t = Expanding, truncating

= Truncating = mod
= Addition, negation, multiplication, shifting
Instructors: = Operations are mod 2%
Roger B. Dannenberg and Greg Ganger = Ordering properties do not hold
= u>0doesnotmeanu+v>v
= u,v>0doesnotmeanu-v>0

2 |
Today: Floating Point Fractional binary numbers
= Background: Fractional binary numbers = What is 1023.405,,?
m |EEE floating point standard: Definition
= Example and properties = Whatis 1011.101,?
= Rounding, addition, multiplication
= Floating pointin C
= Summary
3 | 4 |
Carncgie Mellon

Fractional Binary Numbers Fractional Binary Numbers: Examples

m Value Representation
5-3/4 101.11,
2-7/8 10.111,
63/64 0.111111,

byb, e+ by b, byeb_ b, by eee b

i Dicy —j

1 m Observations
%ﬁ = Divide by 2 by shifting right

/8 = Multiply by 2 by shifting left
= Compare to shifting decimal numbers right or left
2 = Numbers of form0.111111.., are just below 1.0
= Representation =1/2+1/4+1/8+..+1/2"+.. > 1.0

= Compare t0 0.9999...,,— 1.0
= Use notation 1.0- ¢

= Bits to right of “binary point” represent fractional powers of 2

= Represents rational number: ib 2k
-
=]

15-213/18-243, Fall 2009

Carnegie Mellon

Representable Numbers

= Limitation
= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

= Value Representation
1/3 0.0101010101[01]..,
1/5 0.001100110011[0011]..,
1/10 0.0001100110011[0011]..,

= Observation
= 0.1,y has no finite exact binary representation!

Carnegie Mellon

IEEE Floating Point

= IEEE Standard 754
= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
= Nice standards for rounding, overflow, underflow
= Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard

Precisions

m Single precision: 32 bits

[s]exp [frac
1 8 23

= Double precision: 64 bits

[s]exp [frac
1 11 52

= Extended precision: 80 bits (Intel only)

[s]exp [£rac |
1 15 63 or 64

Carnegie Mellon

Today: Floating Point

IEEE floating point standard: Definition

Floating Point Representation

= Numerical Form:
(-1 ™M 2f
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

= Encoding
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

[s]exp [frac |

Carnegie Mellon

Normalized Values

= Condition: exp = 000..0 andexp=111..1

= Exponent coded as biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bias = 2°1 - 1, where e is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx..x,
= xxx..x: bits of frac
= Minimum when 000...0 (M =1.0)
= Maximum when 111...1 (M=2.0-¢)
= Why does M range from 1 to 2-? Why not 0 to 1-?
= Get extra leading bit for “free”

15-213/18-243, Fall 2009

Carnegie Mellon

Normalized Encoding Example
m Value: Float F = 15213.0;

= 15213,, =11101101101101,

=1.1101101101101, x 23

= Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
= Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,
= Result:
[0][10001100][11011011011010000000000]

s exp frac

Carnegie Mellon

Special Values

= Condition:exp=111..1

m Case:exp=111..1, frac=000..0
= Represents value ® (infinity)
= Operation that overflows
= Both positive and negative
= Eg., 1.0/0.0=-1.0/-0.0 = +%, 1.0/-0.0=-%

m Case: exp=111..1, frac=000..0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(-1), o — o0, 00 %

Carnegie Mellon

Today: Floating Point

Example and properties

Carnegie Mellon

Denormalized Values

= Condition: exp = 000...0

= Exponent value: E = 1 — Bias (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0 . xxx...x,
» xxx..x: bits of frac
m Cases
®* exp=000..0, frac=000..0
= Represents value 0
= Note distinct values: +0 and -0 (why?)
" exp=000..0, frac=000..0
= Numbers very close to 0.0
= Lose precision as get smaller
= Equispaced

Carnegie Mellon

Visualization: Floating Point Encodings

© . . +o0
| | -Normalized -Denorm . , .+Denorm, +Normalized |,
1

T T LY T
/ \ NaN
-0 +0

Carnegie Mellon

Tiny Floating Point Example
[s[exp [frac]

1 4 3

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

= Same general form as IEEE Format
= normalized, denormalized
= representation of 0, NaN, infinity

15-213/18-243, Fall 2009

Carnegie Mellon

Is 8-bit Float Just an Example?
[s[exp [frac |

1 3 4

= ulaw Audio Representation
= An 8-bit float used for digital telephony in North America/Japan

m We'll hear some examples later

= Small floats also used in GPUs!

Carnegie Mellon

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= f =2 fraction bits
= Biasis23%-1=3

= Notice how the distribution gets denser toward zero.

Denormalized 4 Normalized Inﬁnny‘

Carnegie Mellon

Sound Examples

= Floats are more precise near zero

" +* * + + "
-15 -10 -5 0 5 10 15
‘ ¢ Denormalized 4 Normalized Infinity ‘

= Fixed-point numbers quantize uniformly throughout their
range

AMMAAAAAMAAAAAAAAAAMAAAAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL

-15 -10 -5 0 5 10 15

Carnegie Mellon

Dynamic Range (Positive Only)

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8%1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers

0 0000 110 -6 6/8%1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 000 -6 8/8*1/64 = 8/512 smallest norm

0 0001 001 -6 9/8%1/64 = 9/512

0 0110 110 -1 14/8%1/2 = 14/16
o -~ 0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
""':‘ ize 0 0111 000 0 8/8%1 =1
EUmbers 0 0111 001 0O 9/8*1 = 9/8 closest to 1 above

0 0111 010 © 10/8%1 = 10/8

0 1110 110 7 14/8%128 = 224

0 1110 111 7 15/8%128 = 240 largest norm

0 1111 000 n/a inf

20 |

Carnegie Mellon

Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
= f=2 fraction bits
® Biasis3

kA A A A G OO O OGO A h A h A —h—h—h—A
-1 -05 0 05 1
Denormalized A Normalized | Infinity

Carnegie Mellon

Interesting Numbers {single,double}
Description exp frac Numeric Value
m Zero 00..00 00...00 0.0
= Smallest Pos. Denorm. 00..00 00...01 2- 12352} x o~ (126,1022)
= Single = 1.4 x 107%°
= Double ~ 4.9 x 1073
m Largest Denormalized 00..00 11..11
= Single ~ 1.18 x 10738
= Double = 2.2 x 107308

(1.0 - ¢) x 2~ (1261022}

= Smallest Pos. Normalized 00..01 00..00 1.0x 2- 1261022}
= Just larger than largest denormalized
m One 01..11 00..00 1.0

m Largest Normalized 11..10 11..11
= Single =~ 3.4 x 103
= Double ~ 1.8 x 10%%®

(2.0 - ¢) x 21127.2023)

15-213/18-243, Fall 2009

Carnegie Mellon

Special Properties of Encoding

m FP Zero Same as Integer Zero
= Allbits=0

= Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
= Must consider -0 = 0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

Floating Point Operations: Basic Idea

mx +., y = Round(x + y)

® X x, Yy = Round(x x y)

= Basicidea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £rac

Carnegie Mellon

Closer Look at Round-To-Even

m Default Rounding Mode
= Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

= E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

Carnegie Mellon

Today: Floating Point

Rounding, addition, multiplication

Rounding

= Rounding Modes (illustrate with $ rounding)

$1.40 $1.60 $1.50 $2.50 -$1.50

= Towards zero $1 $1 $1 $2 -$1
= Round down (-) $1 S1 S1 $2 -$2
= Round up (+) $2 $2 $2 $3 51
= Nearest Even (default $1 $2 $2 $2 -$2

= What are the advantages of the modes?

Carnegie Mellon

Rounding Binary Numbers

= Binary Fractional Numbers
= “Even” when least significant bit is 0
= “Half way” when bits to right of rounding position =100...,

= Examples
= Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011, 10.00, (<1/2—down) 2
23/16 10.00110, 10.01, (>1/2—up) 21/4
27/8 10.11100, 11.00, (1/2—up) 3

25/8 10.10100, 10.10, (1/2—down) 21/2

15-213/18-243, Fall 2009

FP Multiplication

(<1)s1 M1 261 x (=1)2 M2 2€2
m Exact Result: (-1)° M 2F

= Signs: s17s2

= Significand M: M1 * M2

= Exponent E: E1+E2
m Fixing

= If M 2 2, shift M right, increment £
= |f E out of range, overflow
= Round M to fit £rac precision

= Implementation
= Biggest chore is multiplying significands

Mathematical Properties of FP Add

m Compare to those of Abelian Group

= Closed under addition? Yes
= But may generate infinity or NaN
= Commutative? Yes
= Associative? No
= Overflow and inexactness of rounding
= 0 is additive identity? Yes
= Every element has additive inverse Almost

= Except for infinities & NaNs
= Monotonicity
= g2 b= a+c > b+c? Almost
= Except for infinities & NaNs

Carnegie Mellon

Today: Floating Point

Floating pointin C

Floating Point Addition

(-1)st M1 28 + (-1)2M2 22
Assume E1 > E2
| £1-e2 —¥|
m Exact Result: (-1)° M 2F
= Sign s, significand M:
= Result of signed align & add

= Exponent E: E1 I 1w]

m Fixing

If M 2 2, shift M right, increment £

if M < 1, shift M left k positions, decrement E by k
Overflow if E out of range

Round M to fit £rac precision

Carnegie Mellon

Mathematical Properties of FP Mult

= Compare to Commutative Ring

= Closed under multiplication? Yes
= But may generate infinity or NaN

= Multiplication Commutative? Yes

= Multiplication is Associative? No
= Possibility of overflow, inexactness of rounding

= 1 is multiplicative identity? Yes

= Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding

= Monotonicity
"ag>h &c> 0 =a*c2b*c? Almost
= Except for infinities & NaNs

Carnegie Mellon

Floating Point in C

= C Guarantees Two Levels
float single precision
double double precision

m Conversions/Casting
= Casting between int, float, and double changes bit representation
" Double/float — int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
®* int — double
= Exact conversion, as long as int has < 53 bit word size
®* int — float

= Will round according to rounding mode

15-213/18-243, Fall 2009

Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true
x == (int) (float) x
x == (int) (double) x
int x = ..; f == (float) (double) £
float £ = ..; * d == (float) d
double d = ..; £ = -(-£f);
Assume neither 2/3 == 2/3.0
dnor £ is NaN - d<o0.0 = ((d*2) < 0.0)
d>f = -f > -d
d *d> 0.0
(d+£) -d ==

Carnegie Mellon

Summary

m |EEE Floating Point has clear mathematical properties
= Represents numbers of form M x 2f
= One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
= Not the same as real arithmetic
= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

Carnegie Mellon

Creating Floating Point Number

m Steps 76 32
= Normalize to have leading 1 [s[exp [frac
= Round to fit within fraction
= Postnormalize to deal with effects of rounding

m Case Study

= Convert 8-bit unsigned numbers to tiny floating point format
= Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011
138 10001010
63 00111111

Carnegie Mellon

Today: Floating Point

= Summary

Carnegie Mellon

More Slides

Carnegie Mellon

Normalize
76 32 0
[s[exp [frac]

= Requirement
= Set binary point so that numbers of form 1.xxxxx
= Adjust all to have leading one
= Decrement exponent as shift left
Value Binary Fraction Exponent

128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 5
19 00010011 1.0011000 5
138 10001010 1.0001010 7
63 00111111 1.1111100 5

15-213/18-243, Fall 2009

Carnegie Mellon

Rounding
1.BBGRXX

Guard bit: LSB of result

Sticky bit: OR of ining bit:
Round bit: 1%t bit removed T chy Bl ot remaining bits

= Round up conditions
= Round =1, Sticky =1 >0.5
= Guard = 1, Round = 1, Sticky = 0 = Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 00* N 1.000
15 1.1010000 10* N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

Carnegie Mellon

Postnormalize

m Issue
= Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15

17 1.000 4 16

19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64

