Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, Spring 2009
1t Lecture, Aug. 25t

Instructors:
Roger Dannenberg and Greg Ganger

The course that gives CMU its “Zip”!

Carnegie Mellon

Overview

m Course role and theme
m Five realities
m Logistics

Carnegie Mellon

Role within CS/ECE Curriculum

CS 412
OS Practicum

CS 415 CS 441 €5 410 . CS 411 CS 462 ECE 447 ECE 349 ECE 348
Operating . . . Embedded Embedded
Databases Networks Compilers Graphics Architecture
Systems Systems System Eng.
\ A LY 7 / / /
Network Processes Machine
Data Reps. : . Execution Model
Memory Model Protocols Mem. Mgmt Code Arithmetic

CS 123
C Programming

Memory System

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Carnegie Mellon

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
= QOperating Systems
= Implement large portions of operating system
" Embedded Systems
= Implement small-scale embedded systems
" Networking
= Implement and simulate network protocols

Carnegie Mellon

Course Perspective (Cont.)

m Our Course is Programmer-Centric

" Purpose is to show how by knowing more about the underlying
system, one can be more effective as a programmer

= Enable you to
= Write programs that are more reliable and efficient
= Incorporate features that require hooks into OS
— E.g., concurrency, signal handlers
" Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone
= Cover material in this course that you won’t see elsewhere

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality

m Most CS courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
" Need to understand details of underlying implementations

m Useful outcomes
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
= Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Carnegie Mellon

Great Reality #1:
Int’s are not Integers, Float’s are not Reals

m Example 1:1s x220?
" Float’s: Yes!
= Int’s:
= 40000 * 40000 --> 1600000000
= 50000 * 50000 -->??
m Example2:Is(x+y)+2z = x+(y+2)?
" Unsigned & Signed Int’s: Yes!
= Float’s:

= (1e20+-1e20) + 3.14-->3.14
= 1e20 +(-1e20 + 3.14) --> ??

Carnegie Mellon

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I”

m Cannot assume all “usual” mathematical properties
® Due to finiteness of representations
" |nteger operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation

= Need to understand which abstractions apply in which contexts

" |mportant issues for compiler writers and serious application
programmers

Carnegie Mellon

Great Reality #2:
You've Got to Know Assembly

m Chances are, you’ll never write program in assembly
= Compilers are much better & more patient than you are

m But: Understanding assembly key to machine-level
execution model

= Behavior of programs in presence of bugs
= High-level language model breaks down

® Tuning program performance
= Understand optimizations done/not done by the compiler
= Understanding sources of program inefficiency

" |mplementing system software
= Compiler has machine code as target
= Operating systems must manage process state

= Creating / fighting malware
= x86 assembly is the language of choice!

Carnegie Mellon

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
" |t must be allocated and managed
= Many applications are memory dominated

m Memory referencing bugs especially pernicious
= Effects are distant in both time and space

m Memory performance is not uniform

® Cache and virtual memory effects can greatly affect program
performance

= Adapting program to characteristics of memory system can lead to
major speed improvements

Carnegie Mellon

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[1] = {3.14};
volatile long 1Int af2];
a[i1] = 1073741824; /* Possibly out of bounds */
return d[O];

}

fun(0) — 3.14

fun(l) — 3.14

fun(2) — 3.1399998664856

fun(3) — 2.00000061035156

fun(4) — 3.14, then segmentation fault

Carnegie Mellon

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[1] = {3.14};
volatile long Int aJ2];
a[i1] = 1073741824; /* Possibly out of bounds */
return d[O];
+
fun(0) —> 3.14
fun(l) — 3.14
fun(2) — 3.1399998664856
fun(3d) -— 2.00000061035156
fun(4) — 3.14, then segmentation fault
Explanation: Saved State 4 °
d7 .. d4 3
d3 . do 5 Locatlc_)n accessed by
fun(n)
a[1] 1
af[0] 0 _

Carnegie Mellon

Memory Referencing Errors

m Cand C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java or ML

= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance

= Easily see 10:1 performance range depending on how code written

= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity
and generality

Carnegie Mellon

Memory System Performance Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst][2048][2048]) int dst][2048][2048])
{ {
int i,j; int i,j;
for (i = 0; i < 2048; i++) — for (J = 0; j < 2048; j++)
for (j = 0; j < 2048; j++) :><» for (1 = 0; 1 < 2048; 1++)
dst[i]1y] = srclillil; dst[i]1y] = srclillil;
+ +

21 times slower
(Pentium 4)

m Hierarchical memory organization (caches)
m Performance depends on access patterns

" |ncluding how step through multi-dimensional array

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

m They need to get data in and out

= |/O system critical to program reliability and performance

m They communicate with each other over networks
" Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

Carnegie Mellon

Overview

m Course role and theme
m Five realities
m Logistics

Teaching staff

m Instructors

= Prof. Roger Dannenberg We’re glad to talk with you, but
please send email first or come to

" Prof. Greg Ganger
office hours.

m TA’s
= Ben Blum
" Tessa Eng
= Jonathan Harbuck
= Teddy Martin
" Hunter Pitelka
= Josh Primera
= Sean Stangl
" Tom Tuttle

m Course Admin
= Bara Ammoura (“ECE Course Hub”, Hamerschlag Hall, D-level, cube A-10)

Carnegie Mellon

Textbooks

m Randal E. Bryant and David R. O’Hallaron,
= “Computer Systems: A Programmer’s Perspective”, Prentice Hall 2003.
" http://csapp.cs.cmu.edu
" This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

m Brian Kernighan and Dennis Ritchie,
= “The C Programming Language, Second Edition”, Prentice Hall, 1988

Carnegie Mellon

Course Components

m Lectures
= Higher level concepts

m Recitations

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

m Labs (6)

" The heart of the course
= 2 or 3 weeks

" Provide in-depth understanding of an aspect of systems
" Programming and measurement

m Exams (2 + final)

= Test your understanding of concepts & mathematical principles

Getting Help

m Class Web Page
" http://www.cs.cmu.edu/~213
= Copies of lectures, assignments, exams, solutions

= (Clarifications to assignments

m Message Board
" http://autolab.cs.cmu.edu
= (Clarifications to assignments, general discussion
"= The only board your instructors will be monitoring (No blackboard or
Andrew)

Carnegie Mellon

Getting Help

m Staff mailing list
= 15-213-staff@cs.cmu.edu
" “The autolab server is down!”
= “Who should | talk to about ...”
= “This code {...}, which | don't want to post to the bboard, causes my
computer to melt into slag.”
m Teaching assistants
= | don't get “associativity”...
= Office hours, e-mail, by appointment
= Please send mail to 15-213-staff, not a randomly-selected TA

m Professors
= Office hours or appointment
= “Should | drop the class?” “A TA said ... but ...”

Carnegie Mellon

Policies: Assignments (Labs) And Exams

m Work groups
" You must work alone on all but final lab (see Syllabus!)
m Handins
= Assignments due at 11:59pm on Tues or Thurs evening
= Electronic handins using Autolab (no exceptions!).
m Conflict exams, other irreducible conflicts
= OK, but must make PRIOR arrangements with Prof. Dannenberg/Ganger
m Appealing grades

= Within 7 days of completion of grading.
= Following procedure described in syllabus

Autolab Web Service

m Labs are provided by the Autolab system
= Autograding handin system developed in 2003 by Dave O’Hallaron
= Apache Web server + Perl CGI programs
= Beta tested Fall 2003, very stable by now

m With Autolab you can use your Web browser to:
= Review lab notes, clarifications
= Download the lab materials
= Stream autoresults to a class status Web page as you work.
®= Handin your code for autograding by the Autolab server.

= View the complete history of your code handins, autoresult
submissions, autograding reports, and instructor evaluations.

= View the class status page

Carnegie Mellon

Facilities

m Labs will use the Intel Computer Systems Cluster

(aka “the fish machines”)

= 15 Pentium Xeon servers donated by Intel for CS 213

= Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors

= 2GB, 400 MHz DDR2 SDRAM memory

= Rack mounted in the 3rd floor Wean Hall machine room.

" Your accounts are ready nearing readiness.

m Getting help with the cluster machines:

= See course Web page for login directions
= Please direct questions to your TA’s first

Carnegie Mellon

Timeliness

m Grace days
= 4 for the course
= Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
= Save them until late in the term!

m Lateness penalties

= Once grace days used up, get penalized 15%/day

= Typically shut off all handins 2—3 days after due date
m Catastrophic events

= Major illness, death in family, ...

= Work with your academic advisor to formulate plan for getting back on
track

m Advice

" Once you start running late, it’s really hard to catch up

Carnegie Mellon

Cheating

m What is cheating? (see Syllabus!)

= Sharing code: either by copying, retyping, looking at, or supplying a
copy of a file

® Coaching: helping your friend to write a lab, line by line
= Copying code from previous course or from elsewhere on WWW
= Only allowed to use code we supply, or from CS:APP website

m What is NOT cheating?

= Explaining how to use systems or tools

= Helping others with high-level design issues
m Penalty for cheating:

= Removal from course with failing grade
m Detection of cheating:

= We do check and our tools for doing this are much better than you
think!

Carnegie Mellon

Policies: Grading

m Exams: weighted %, %, % (final)

m Labs: weighted according to effort (determined near the end)

m The worse of lab score and exam score is weighted 60%, the
better 40%:

" Labscore:0<L<100,
Exam score: 0 < E <100
Total score: 0.6 min(L, E) + 0.4 max(L,E)

m Guaranteed:
= >90%:A
= >80%:B
= >70%:C

Carnegie Mellon

Have Fun!

