
Full Name:Andrew ID:Recitation Section:CS 15-213, Spring 2001Exam 2April 17, 2001Instructions:� Make sure that your exam is not missing any sheets, then write your full name and AndrewID on the front.� Write your answers in the space provided below the problem. If you make a mess, clearlyindicate your �nal answer.� The exam has a maximum score of 70 points.� This exam is OPEN BOOK. You may use any books or notes you like. You cannot, however,use any computers, calculators, palm pilots, Good luck!1:2:3:4:5:6:TOTAL:
Page 1 of 11

Problem 1. (12 points):In this problem, you will compare the performance of direct-mapped and 2-way associative cacheswith various program fragments.To keep calculations simple count the number of cache misses caused only by accesses to arrayelements. Also assume that� All caches have a size of 128 bytes and 16-byte cache-lines.� The arrays are stored in row-major order.� array 1, array 2 and grid begin at a 16-byte aligned addresses.� The cache is empty at the beginning of an execution.� Variables i,j are stored in registers and thus, an access to these variables does not change thecache content and does not cause a cache miss.� Calls to malloc do not change the cache content and do not cause a cache miss.A. What is the minimum and maximum number of cache misses incurred in any execution ofthe following code with a direct mapped cache?int *array_1;int *array_2;array_1 = (int *) malloc (8*sizeof(int));array_2 = (int *) malloc (8*sizeof(int));for (i = 0; i < 8; ++i)array_1[i] = 0;for (i = 0; i < 8; ++i)array_2[i] = 0;for (i = 0; i < 8; ++i)array_1[i] = 1;for (i = 0; i < 8; ++i)array_2[i] = 1;The minimum number of cache misses =The maximum number of cache misses =B. What is the minimum and maximum number of cache misses incurred in any execution ofthe code in part A with a 2-way associative cache?The minimum number of cache misses =The maximum number of cache misses =Page 2 of 11

C. How many cache misses are incurred in an execution of the following code with a directmapped cache?int grid[8][8];for (i=0; i<8; i++){for (j=0; j<8; j++)grid[i][j] = j;}The number of cache misses with a direct mapped cache =D How many cache misses are incurred in an execution of the following code with a directmapped cache?int grid[8][8];for (i=0; i<8; i++)for (j=0; j<8; j++)grid[j][i] = i;The number of cache misses with a direct mapped cache =

Page 3 of 11

Problem 2. (12 points):Part 1Consider a computer with a 12-bit address space and a two level cache. Both levels use a LRUreplacement policy. The parameters of the caches are as follows:� L1: 32 bytes, 2-way set associative, 8-byte cache lines.� L2: 512 bytes, 2-way set associative, 16-byte cache lines.The boxes below represent the bit-format of a physical address. In each box, for each cache (L1and L2), indicate which �eld that bit represents (it's possible that a �eld doesn't exist). Here arethe �elds:O: Byte o�set within the cache lineI: The cache (set) indexT: The cache tag 11 10 9 8 7 6 5 4 3 2 1 0L1 11 10 9 8 7 6 5 4 3 2 1 0L2The table below shows a trace of memory accesses (loads) made by the processor. For each accessspecify whether it is a level 1 cache hit (Ll), a level 2 cache hit (L2), or a miss (M). If the accessis a hit, specify which previous access (by line number) loaded the value into the cache. Assumethat initially all cache lines are invalid.Load No. Hex Address Binary Address L1, L2 or M Which line loaded?1 b57 1011 0101 01112 c55 1100 0101 01013 f74 1111 0111 01004 b50 1011 0101 00005 b5c 1011 0101 11006 f72 1111 0111 00107 b7a 1011 0111 10108 159 0001 0101 10019 c50 1100 0101 000010 b7f 1011 0111 1111Suggestion: Work out the L1 hits before dealing with the L2 hits.Page 4 of 11

Problem 3. (12 points):You are given four groups of statements relating to memory management and garbage collectionbelow. In each group, only one statement is true. Your task is to mark the statement that is true.1. (a) In a buddy system, up to 50% of the space can be wasted due to internal fragmentation.(b) The �rst-�t memory allocation algorithm is slower than the best-�t algorithm (on aver-age).(c) Deallocation using boundary tags is fast only when the list of free blocks is orderedaccording to increasing memory addresses.(d) The buddy system su�ers from internal fragmentation, but not from external fragmen-tation.2. (a) Using the �rst-�t algorithm on a free list that is ordered according to decreasing blocksizes results in low performance for allocations, but avoids external fragmentation.(b) For the best-�t method, the list of free blocks should be ordered according to increasingmemory addresses.(c) The best-�t method chooses the largest free block into which the requested segment �ts.(d) Using the �rst-�t algorithm on a free list that is ordered according to increasing blocksizes is equivalent to using the best-�t algorithm.3. (a) The advantage of a reference counting garbage collector, when compared to a mark-and-sweep collector, is that it does not fail to free memory that is no longer in use.(b) Copying garbage collection is often faster than mark-and-sweep garbage collection (ig-noring the cost of copying) because instead of touching all of the allocated blocks, ittouches only the ones that are still reachable.(c) Copying garbage collection is helpful for reducing internal fragmentation.(d) In reference counting, decrementing is a constant time operation.4. Mark-and-sweep garbage collectors are called conservative if(a) they coalesce freed memory only when a memory request cannot be satis�ed,(b) they treat everything that looks like a pointer as a pointer,(c) they perform garbage collection only when they run out of memory,(d) they do not free memory blocks forming a cyclic list.
Page 5 of 11

Problem 4. (12 points):This problem tests your understanding of memory bugs. Each of the four parts below containsa snippet of C code which may or may not contain memory errors. The code compiles with nowarnings or errors. If you think that there are no bugs in the code, then simply circle NO.Otherwise, please circle YES and write the letter(s) that correspond to the bug in the code.Possible bugs:A bu�er over
ow errorB memory leakC dereference uniniatilized pointerD incorrect use of address of operatorE may dereference NULLF frees unallocated memoryG misaligned memory access#include <stdlib.h>typedef struct snode {void *ptr;struct snode *next;} stack_node;typedef struct stack_s {stack_node *head;} stack_t;a. /* initializes stack to be an empty stack */void init(stack_t *stack) {stack->head = NULL;}void gc() {stack_t **stack;init(*stack);/* more code */}YES (write corresponding letter(s))NO (no bugs) Page 6 of 11

b. /* Puts a stack_node with the value ptronto the top of the stack. You may assumethe passed arguments are valid and the callto malloc does not fail.*/void push(stack_t *stack, void *ptr) {stack_node *new =(stack_node*)malloc(sizeof(stack_node));new->ptr = ptr;new->next = stack->head;stack->head = new;}YES (write corresponding letter(s))NO (no bugs)c. /* removes the stack_node at the top of the stackand returns the value that was contained within it.You may assume the passed argument is valid.*/void *pop(stack_t *stack) {if(stack->head) {void *ret = stack->head->ptr;stack->head = stack->head->next;return ret;}return NULL;}YES (write corresponding letter(s))NO (no bugs)d. /* returns a nonzero value if the stack isn't empty.You may assume the passed argument is valid.*/int non_empty(stack_t *stack) {return (int)stack->head->ptr;}YES (write corresponding letter(s))NO (no bugs) Page 7 of 11

Problem 5. (10 points):Suppose that the following C program is run on a singple processor machine.#include <unistd.h>#include <stdio.h>int cnt = 0;int main(void){ if (fork()==0){cnt++;fork();cnt++;}cnt++;printf("%d",cnt);return 0;}List all possible outputs of this program.

Page 8 of 11

Consider the following threaded program.#include <stdio.h>#include <pthread.h>int cnt = 0;void *count(void *arg){printf("%d\n",cnt);return NULL;}int main(void){ pthread_t tid1, tid2;pthread_create(&tid1, NULL, count, NULL);pthread_create(&tid2, NULL, count, NULL);cnt++;pthread_join(tid1,NULL);cnt++;pthread_join(tid2,NULL);return 0;}List all possible outputs of the �rst thread (the one whose thread ID is stored in tid1).List all possible outputs of the second thread (the one whose thread ID is stored in tid2).
Page 9 of 11

Problem 6. (12 points):The following problem concerns various aspects of virtual memory.Part I.For this part only, the following are attributes of the machine that you will need to consider:� Memory is byte addressable� Virtual Addresses are 32 bits wide� Physical Addresses are 27 bits wide� Pages are 16KB� Each Page Table Entry contains:{ Physical Page Number{ Valid Bit, Read Protection Bit, and Write Protection BitA. The box below shows the format of a virtual address. Indicate the bits used for the VPN (VirtualPage Number) and VPO (Virtual Page O�set).28 24 20 16 12 8 4 0B. The box below shows the format for a physical address. Indicate the bits used for the PPN (PhysicalPage Number) and PPO (Physical Page O�set)24 20 16 12 8 4 0C. Note: For the questions below, answers of the form 2i are acceptable. Also, please note the units ofeach answerHow much virtual memory is addressable? bytesHow much physical memory is addressable? bytesHow many bits is each Page Table Entry? bitsHow large is the Page Table? bytesPage 10 of 11

Part II(4 points)In this part, we will analyze the use of a 2-level page table, in which the entries of the �rst level table (thePage Directory) tell us the (physical) address in memory of a second page table. This second table's entries�nish the address translation by mapping from a second virtual page number to a physical page number.A virtual address on a machine with a 2-level page table looks like:VPN1 VPN2 VPOWhile address translation looks like:
Page Directory

Page Table

VPN1

VPN2

PPN

For this part, assume the following:� The machine uses 32-bit addresses, with VPN1 and VPN2 being 10 bits wide and VPO being 12 bitswide� Page Table Entries and Page Directory Entries are 4 bytesA. Assume there is a single task running on the system. The task's heap area is allocated in the phys-ical range 0x0A000 - 0x19fff. The task's stack area is allocated in the physical range 0x04000 -0x05fff. How much memory is in use strictly by the Page Directory and Page Tables?B. Name one bene�t of using 2-level page tables.
Page 11 of 11

