
Page 1

Concurrent Programming
November 30, 2007

Concurrent Programming
November 30, 2007

TopicsTopics
Event-based concurrent servers
Shared variables
The need for synchronization
Synchronizing with semaphores

15-213
“The course that gives CMU its Zip!”

lecture-25.ppt – 2 – 15-213, F’07

Three Basic Mechanisms for
Creating Concurrent Flows
Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes1. Processes
Kernel automatically interleaves multiple logical flows
Each flow has its own private address space

2. Threads2. Threads
Kernel automatically interleaves multiple logical flows
Each flow shares the same address space

3. I/O multiplexing with 3. I/O multiplexing with select()select()
Application “manually” interleaves multiple logical flows
Each flow shares the same address space
Popular for high-performance server designs

– 3 – 15-213, F’07

Appr. #3: Event-Based Concurrent
Servers Using I/O Multiplexing
Appr. #3: Event-Based Concurrent
Servers Using I/O Multiplexing

Maintain a pool of connected descriptorsMaintain a pool of connected descriptors

Repeat the following forever:Repeat the following forever:
Use the Unix select function to block until:

(a) New connection request arrives on the listening descriptor
(b) New data arrives on an existing connected descriptor

If (a), add the new connection to the pool of connections
If (b), read any available data from the connection

Close connection on EOF and remove it from the pool

– 4 – 15-213, F’07

The select FunctionThe select Function
select()select() sleeps until one or more file descriptors in the set sleeps until one or more file descriptors in the set readsetreadset

ready for readingready for reading

#include <sys/select.h>

int select(int maxfdp1, fd_set *readset, NULL, NULL, NULL);

readset
• Opaque bit vector (max FD_SETSIZE bits) that indicates membership in

a descriptor set
• If bit k is 1, then descriptor k is a member of the descriptor set

maxfdp1
• Maximum descriptor in descriptor set plus 1
• Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership

select()select() returns the number of ready descriptors and sets each bit of returns the number of ready descriptors and sets each bit of
readsetreadset to indicate the ready status of its corresponding descriptorto indicate the ready status of its corresponding descriptor

– 5 – 15-213, F’07

Macros for Manipulating Set
Descriptors
Macros for Manipulating Set
Descriptors
void void FD_ZERO(fd_setFD_ZERO(fd_set **fdsetfdset););

Turn off all bits in fdset

void void FD_SET(intFD_SET(int fdfd, , fd_setfd_set **fdsetfdset););

Turn on bit fd in fdset

void void FD_CLR(intFD_CLR(int fdfd, , fd_setfd_set **fdsetfdset););

Turn off bit fd in fdset

intint FD_ISSET(intFD_ISSET(int fdfd, *, *fdsetfdset););

Is bit fd in fdset turned on?

– 6 – 15-213, F’07

Overall StructureOverall Structure
listenfd

10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

0
1
2
3
4
5
6
7
8
9

• • •

Active

Inactive

Active

Never Used

Manage Pool of ConnectionsManage Pool of Connections
listenfd: Listen for requests
from new clients
Active clients: Ones with a
valid connection

Use select to detect activityUse select to detect activity
New request on listenfd
Request by active client

Required ActivitiesRequired Activities
Adding new clients
Removing terminated clients
Echoing

Page 2

– 7 – 15-213, F’07

Representing Pool of ClientsRepresenting Pool of Clients

/*
* echoservers.c - A concurrent echo server based on select
*/
#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
int maxfd; /* largest descriptor in read_set */
fd_set read_set; /* set of all active descriptors */
fd_set ready_set; /* subset of descriptors ready for reading */
int nready; /* number of ready descriptors from select */
int maxi; /* highwater index into client array */
int clientfd[FD_SETSIZE]; /* set of active descriptors */
rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */

} pool;

int byte_cnt = 0; /* counts total bytes received by server */

– 8 – 15-213, F’07

Pool ExamplePool Example
maxfd = 12
maxi = 6
read_set = { 3, 4, 5, 7, 10, 12 }10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

0
1
2
3
4
5
6
7
8
9

• • •

Active

Inactive

Active

Never Used

listenfd = 3

– 9 – 15-213, F’07

Main LoopMain Loop
int main(int argc, char **argv)
{

int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
struct sockaddr_in clientaddr;
static pool pool;

listenfd = Open_listenfd(argv[1]);
init_pool(listenfd, &pool);

while (1) {
pool.ready_set = pool.read_set;
pool.nready = Select(pool.maxfd+1, &pool.ready_set,

NULL, NULL, NULL);

if (FD_ISSET(listenfd, &pool.ready_set)) {
connfd = Accept(listenfd, (SA *)&clientaddr,&clientlen);
add_client(connfd, &pool);

}
check_clients(&pool);

}
}

– 10 – 15-213, F’07

Pool InitializationPool Initialization
/* initialize the descriptor pool */
void init_pool(int listenfd, pool *p)
{

/* Initially, there are no connected descriptors */
int i;
p->maxi = -1;
for (i=0; i< FD_SETSIZE; i++)

p->clientfd[i] = -1;

/* Initially, listenfd is only member of select read set */
p->maxfd = listenfd;
FD_ZERO(&p->read_set);
FD_SET(listenfd, &p->read_set);

}

– 11 – 15-213, F’07

Initial PoolInitial Pool
maxfd = 3
maxi = -1
read_set = { 3 }-1

clientfd

-1

-1

-1

-1

-1

-1

-1

-1

-1

0
1
2
3
4
5
6
7
8
9

• • •

Never Used

listenfd = 3

– 12 – 15-213, F’07

Main LoopMain Loop
int main(int argc, char **argv)
{

int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
struct sockaddr_in clientaddr;
static pool pool;

listenfd = Open_listenfd(argv[1]);
init_pool(listenfd, &pool);

while (1) {
pool.ready_set = pool.read_set;
pool.nready = Select(pool.maxfd+1, &pool.ready_set,

NULL, NULL, NULL);

if (FD_ISSET(listenfd, &pool.ready_set)) {
connfd = Accept(listenfd, (SA *)&clientaddr,&clientlen);
add_client(connfd, &pool);

}
check_clients(&pool);

}
}

Page 3

– 13 – 15-213, F’07

Adding ClientAdding Client
void add_client(int connfd, pool *p) /* add connfd to pool p */
{

int i;
p->nready--;

for (i = 0; i < FD_SETSIZE; i++) /* Find available slot */
if (p->clientfd[i] < 0) {

p->clientfd[i] = connfd;
Rio_readinitb(&p->clientrio[i], connfd);

FD_SET(connfd, &p->read_set); /* Add desc to read set */

if (connfd > p->maxfd) /* Update max descriptor num */
p->maxfd = connfd;

if (i > p->maxi) /* Update pool high water mark */
p->maxi = i;

break;
}

if (i == FD_SETSIZE) /* Couldn't find an empty slot */
app_error("add_client error: Too many clients");

}

– 14 – 15-213, F’07

maxfd = 12
maxi = 6
read_set = { 3, 4, 5, 7, 10, 11, 12 }

Adding Client with fd 11Adding Client with fd 11
maxfd = 12
maxi = 6
read_set = { 3, 4, 5, 7, 10, 11, 12 }10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

0
1
2
3
4
5
6
7
8
9

• • •

Active

Inactive

Active

Never Used

listenfd = 3

11

– 15 – 15-213, F’07

Checking ClientsChecking Clients
void check_clients(pool *p) { /* echo line from ready descs in pool p */

int i, connfd, n;
char buf[MAXLINE];
rio_t rio;

for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
connfd = p->clientfd[i];
rio = p->clientrio[i];

/* If the descriptor is ready, echo a text line from it */
if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {

p->nready--;
if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

byte_cnt += n;
Rio_writen(connfd, buf, n);

}
else {/* EOF detected, remove descriptor from pool */

Close(connfd);
FD_CLR(connfd, &p->read_set);
p->clientfd[i] = -1;

}
}

}
}

– 16 – 15-213, F’07

Concurrency LimitationsConcurrency Limitations

Current design will hang up if partial line transmitted
Bad to have network code that can hang up if client does
something weird

By mistake or maliciously
Would require more work to implement more robust version

Must allow each read to return only part of line, and reassemble
lines within server

if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
p->nready--;
if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

byte_cnt += n;
Rio_writen(connfd, buf, n);

}
}

Does not return until
complete line received

– 17 – 15-213, F’07

Pro and Cons of Event-Based DesignsPro and Cons of Event-Based Designs
+ One logical control flow+ One logical control flow
+ Can single+ Can single--step with a debuggerstep with a debugger
+ No process or thread control overhead+ No process or thread control overhead

Design of choice for high-performance Web servers and
search engines

-- Significantly more complex to code than processSignificantly more complex to code than process-- or or
threadthread--based designsbased designs

-- Hard to provide fineHard to provide fine--grained concurrencygrained concurrency
E.g., our example will hang up with partial lines

– 18 – 15-213, F’07

A Process With Multiple ThreadsA Process With Multiple Threads
Multiple threads can be associated with a processMultiple threads can be associated with a process

Each thread has its own logical control flow
Each thread shares the same code, data, and kernel context

Share common virtual address space
Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write dataThread 1 context:
Data registers
Condition codes
SP1
PC1

Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

stack 2

Thread 2 (peer thread)

Page 4

– 19 – 15-213, F’07

Pros and Cons of Thread-Based
Designs
Pros and Cons of Thread-Based
Designs
+ Easy to share data structures between threads+ Easy to share data structures between threads

e.g., logging information, file cache

+ Threads are more efficient than processes+ Threads are more efficient than processes

------ Unintentional sharing can introduce subtle and hardUnintentional sharing can introduce subtle and hard--
toto--reproduce errors!reproduce errors!

The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads
(next lecture)

– 20 – 15-213, F’07

Shared Variables in Threaded C
Programs
Shared Variables in Threaded C
Programs
Question: Which variables in a threaded C program are Question: Which variables in a threaded C program are

shared variables?shared variables?
The answer is not as simple as “global variables are shared”
and “stack variables are private”

Requires answers to the following questions:Requires answers to the following questions:
What is the memory model for threads?
How are variables are mapped to each memory instance?
How many threads might reference each instance?

– 21 – 15-213, F’07

Threads Memory ModelThreads Memory Model
Conceptual model:Conceptual model:

Multiple threads run within the context of a single process
Each thread has its own separate thread context

Thread ID, stack, stack pointer, program counter, condition codes, and
general purpose registers

All threads share the remaining process context
Code, data, heap, and shared library segments of the process virtual
address space
Open files and installed handlers

Operationally, this model is not strictly enforced:Operationally, this model is not strictly enforced:
While register values are truly separate and protected....
Any thread can read and write the stack of any other thread

Mismatch between the conceptual and operation model is a source Mismatch between the conceptual and operation model is a source
of confusion and errorsof confusion and errors

– 22 – 15-213, F’07

Example of Threads Accessing
Another Thread’s Stack
Example of Threads Accessing
Another Thread’s Stack
char **ptr; /* global */

int main()
{

int i;
pthread_t tid;
char *msgs[N] = {

"Hello from foo",
"Hello from bar"

};
ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{

int myid = (int) vargp;
static int svar = 0;

printf("[%d]: %s (svar=%d)\n",
myid, ptr[myid], ++svar);

}

Peer threads access main thread’s stack
indirectly through global ptr variable

– 23 – 15-213, F’07

Mapping Variables to Mem. InstancesMapping Variables to Mem. Instances

char **ptr; /* global */

int main()
{

int i;
pthread_t tid;
char *msgs[N] = {

"Hello from foo",
"Hello from bar"

};
ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{

int myid = (int)vargp;
static int svar = 0;

printf("[%d]: %s (svar=%d)\n",
myid, ptr[myid], ++svar);

}

Global var: 1 instance (ptr [data])

Local static var: 1 instance (svar [data])

Local automatic vars: 1 instance (i.m, msgs.m)

Local automatic var: 2 instances (
myid.p0[peer thread 0’s stack],
myid.p1[peer thread 1’s stack]

)

– 24 – 15-213, F’07

Shared Variable AnalysisShared Variable Analysis
Which variables are shared?Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
svar no yes yes
i.m yes no no
msgs.m yes yes yes
myid.p0 no yes no
myid.p1 no no yes

Answer: A variable x is shared Answer: A variable x is shared iffiff multiple threads multiple threads
reference at least one instance of x. Thus:reference at least one instance of x. Thus:

ptr, svar, and msgs are shared
i and myid are NOT shared

Page 5

– 25 – 15-213, F’07

badcnt.c: An Improperly
Synchronized Threaded Program
badcnt.c: An Improperly
Synchronized Threaded Program
/* shared */
volatile unsigned int cnt = 0;
#define NITERS 100000000

int main() {
pthread_t tid1, tid2;
Pthread_create(&tid1, NULL,

count, NULL);
Pthread_create(&tid2, NULL,

count, NULL);

Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

if (cnt != (unsigned)NITERS*2)
printf("BOOM! cnt=%d\n",

cnt);
else

printf("OK cnt=%d\n",
cnt);

}

/* thread routine */
void *count(void *arg) {

int i;
for (i=0; i<NITERS; i++)

cnt++;
return NULL;

}

linux> ./badcnt
BOOM! cnt=198841183

linux> ./badcnt
BOOM! cnt=198261801

linux> ./badcnt
BOOM! cnt=198269672

cnt should be
equal to 200,000,000.
What went wrong?!

– 26 – 15-213, F’07

Assembly Code for Counter LoopAssembly Code for Counter Loop

.L9:
movl -4(%ebp),%eax
cmpl $99999999,%eax
jle .L12
jmp .L10

.L12:
movl cnt,%eax # Load
leal 1(%eax),%edx # Update
movl %edx,cnt # Store

.L11:
movl -4(%ebp),%eax
leal 1(%eax),%edx
movl %edx,-4(%ebp)
jmp .L9

.L10:

Corresponding asm code for (i=0; i<NITERS; i++)
cnt++;

C code for counter loop

Head (Hi)

Tail (Ti)

Load cnt (Li)
Update cnt (Ui)

Store cnt (Si)

– 27 – 15-213, F’07

Concurrent ExecutionConcurrent Execution
Key idea: In general, any sequentially consistent Key idea: In general, any sequentially consistent

interleaving is possible, but some are incorrect!interleaving is possible, but some are incorrect!
Ii denotes that thread i executes instruction I
%eaxi is the contents of %eax in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%eax1

OK

-
-
-
-
-
1
2
2
2
-

%eax2

– 28 – 15-213, F’07

Concurrent Execution (cont)Concurrent Execution (cont)
Incorrect ordering: two threads increment the counter, Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%eax1

-
-
-
-
0
-
-
1
1
1

%eax2

Oops!

– 29 – 15-213, F’07

Concurrent Execution (cont)Concurrent Execution (cont)
How about this ordering?How about this ordering?

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%eax1 %eax2

We can clarify our understanding of concurrent
execution with the help of the progress graph

– 30 – 15-213, F’07

Progress GraphsProgress Graphs
A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Page 6

– 31 – 15-213, F’07

Trajectories in Progress GraphsTrajectories in Progress Graphs

A trajectory is a sequence
of legal state transitions
that describes one possible
concurrent execution of
the threads.

Example:

H1, L1, U1, H2, L2,
S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

– 32 – 15-213, F’07

Critical Sections and Unsafe RegionsCritical Sections and Unsafe Regions
L, U, and S form a
critical section with
respect to the shared
variable cnt.

Instructions in critical
sections (wrt to some
shared variable) should
not be interleaved.

Sets of states where such
interleaving occurs
form unsafe regions.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region

critical section wrt cnt

critical
section
wrt cnt

– 33 – 15-213, F’07

Safe and Unsafe TrajectoriesSafe and Unsafe Trajectories

Def: A trajectory is safe
iff it doesn’t touch any
part of an unsafe region.

Claim: A trajectory is
correct (wrt cnt) iff it is
safe.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region Unsafe
trajectory

Safe trajectory

critical section wrt cnt

critical
section
wrt cnt

– 34 – 15-213, F’07

SemaphoresSemaphores

Question:Question: How can we guarantee a safe trajectory?How can we guarantee a safe trajectory?
We must synchronize the threads so that they never enter an
unsafe state.

Classic solutionClassic solution: : Dijkstra'sDijkstra's P and V operations on P and V operations on
semaphores.semaphores.

semaphore: non-negative integer synchronization variable.
P(s): [while (s == 0) wait(); s--;]

» Dutch for "Proberen" (test)
V(s): [s++;]

» Dutch for "Verhogen" (increment)
OS guarantees that operations between brackets [] are
executed indivisibly.

Only one P or V operation at a time can modify s.
When while loop in P terminates, only that P can decrement s.

Semaphore invariant: Semaphore invariant: (s >= 0)(s >= 0)

– 35 – 15-213, F’07

Safe Sharing with SemaphoresSafe Sharing with Semaphores
Here is how we would use P and V operations to Here is how we would use P and V operations to

synchronize the threads that update synchronize the threads that update cntcnt..

/* Semaphore s is initially 1 */

/* Thread routine */
void *count(void *arg)
{

int i;

for (i=0; i<NITERS; i++) {
P(s);
cnt++;
V(s);

}
return NULL;

}

– 36 – 15-213, F’07

Safe Sharing With SemaphoresSafe Sharing With Semaphores
Provide mutually
exclusive access to
shared variable by
surrounding critical
section with P and V
operations on semaphore
s (initially set to 1).

Semaphore invariant
creates a forbidden region
that encloses unsafe
region and is never
touched by any trajectory.

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Unsafe region

Forbidden region

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

