15-213

“The course that gives CMU its Zip!”

Concurrent Programming
November 28, 2007

Topics
= Limitations of iterative servers
m Process-based concurrent servers
= Threads-based concurrent servers
= Event-based concurrent servers

lecture-24._ppt

Echo Server Operation

Client Server

m open_listenfd
open_clientfd

Connection

@ request @
L 3

Client /

Server
1 +

Await connection
request from
next client

15-213, F0O7

Iterative Servers
Iterative servers process one request at atime

client 1 server client 2
call connect call connect
ret connect

call write

ret write

close
call accept |--....
. | ret connect

ret accept call write

read .
ret write

close
close

15-213, F07

Fundamental Flaw of Iterative Servers

client 1 server client 2
call connect [+ call accept
ret connect
+ ret accept
call fgets
Server blocks | 311 read -| call connect
User goes waiting for
out to lunch g?la from Client 2 blocks
ient 1 o
. waiting to complete
Client 1 blocks its connection
waiting _for user request until after
to type in data lunch!

Solution: use concurrent servers instead
m Concurrent servers use multiple concurrent flows to serve

multiple clients at the same time
15-213, F'07

Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes
m Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Threads
= Kernel automatically interleaves multiple logical flows
m Each flow shares the same address space

3. I/0 multiplexing with select()
= Application “manually” interleaves multiple logical flows
m Each flow shares the same address space
m Popular for high-performance server designs

15-213, F07

Concurrent Programming is Hard!

® The human mind tends to be sequential
The notion of time is often misleading

® Thinking about all possible sequences of events in a computer
system is at least error prone and frequently impossible

@ Classical problem classes of concurrent programs:
= Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system
e Example: who gets the last seat on the airplane?
m Deadlock: improper resource allocation prevents forward progress
e Example: traffic gridlock
m Livelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress
e Example: people always jump in front of you in line

® Many aspects of concurrent programming are beyond the
scope of 15-213

-7- 15-213, F07

Concurrent Servers (approach #1):
Multiple Processes

Concurrent servers handle multiple requests concurrently

client 1 server client 2
call accept
call connect |- P call connect
ret connect [+
ret accept
call fgets hild 1 fork
cl |/
call read
User goes . ret connect
out to lunch call fgets
Client 1 fork write
blocks call read
waiting for
user to type
in data
end read
close
15-213, F07

Review: Sequential Echo Server

int main(int argc, char **argv)

int listenfd, connfd;

int port = atoi(argv[1]);

struct sockaddr_in clientaddr;

int clientlen = sizeof(clientaddr);

listenfd = Open_listenfd(port);

while (1) {
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
echo(connfd);
Close(connfd);

3
exit(0);

= Accept a connection request
= Handle echo requests until client terminates

15-213, F0O7

Process-Based Concurrent Server

int main(int argc, char **argv)

Fork separate process for each
client

Does not allow any
communication between
different client handlers

int listenfd, connfd;

int port = atoi(argv[1]);

struct sockaddr_in clientaddr;
int clientlen=sizeof(clientaddr);

Signal (SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(port);
while (1) {
connfd = Accept(listenfd, (SA
if (ForkQ == 0) {
Close(listenfd); /*

*) &clientaddr, &clientlen);

Child closes its listening socket */

echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */
exit(0); /* Child exits */

3
Close(connfd); /* Parent closes connected socket (important!) */

—10- 15213, F07

Process-Based Concurrent Server
(cont)

void sigchld_handler(int sig)
while (waitpid(-1, 0, WNOHANG) > 0)

return;

= Reap all zombie children

_11- 15-213, F07

Process Execution Model

Connection Requests
_

Listening
Server
Process
Client 1 Client 2
Client1data | geryer Server |Client 2 data
T |Process Process|™

m Each client handled by independent process
= No shared state between them

= When child created, each have copies of listenfd and connfd
® Parent must close connfd, child must close listenfd

12— 15-213, FO7

Implementation Must-dos With
Process-Based Designs

Listening server process must reap zombie children
= to avoid fatal memory leak
Listening server process must close its copy of connfd
= Kernel keeps reference for each socket
u After fork, refcnt(connfd) = 2
m Connection will not be closed until refcnt(connfd) ==

13- 15-213, FO7

Page 2

Pros and Cons of Process-Based
Designs

+ Handle multiple connections concurrently

+ Clean sharing model
m descriptors (no)
= file tables (yes)
m global variables (no)
+ Simple and straightforward
- Additional overhead for process control

- Nontrivial to share data between processes
m Requires IPC (interprocess communication) mechanisms
* FIFO's (named pipes), System V shared memory and semaphores

14— 15-213, FO7

Approach #2: Multiple Threads

Very similar to approach #1 (multiple processes)
= but, with threads instead of processes

_15- 15213, F07

Traditional View of a Process

Process = process context + code, data, and stack

Process context Code, data, and stack

stack

Program context: SP

Data registers

Condition codes shared libraries

Stack pointer (SP) brk

Program counter (PC) run-time heap
Kernel context: read/write data

VM structures PC —| read-only code/data

Descriptor table

brk pointer 0

16— 15213, F07

Alternate View of a Process

Process =thread + code, data, and kernel context

Thread (main thread) Code and Data

shared libraries

brk -
run-time heap
Thread context: read/write data
Data registers read-only code/data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

1
1
1
1
1
1
1
1 PC—
|
|
|
1
1
1
|

17— 15-213, F07

A Process With Multiple Threads

Multiple threads can be associated with a process
m Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
® Share common virtual address space
m Each thread has its own thread id (TID)
Thread 1 (main thread)

stack 1

Thread 1 context:
Data registers
Condition codes
SP1 °
PC1

Shared code and data Thread 2 (peer thread)

stack 2

Thread 2 context:
Data registers
Condition codes
SP2
PC2

shared libraries

run-time heap
read/write data
read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

_18- 15-213, FO7

Logical View of Threads

Threads associated with process form a pool of peers
m Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

@ @@
2

_19- 15-213, FO7

Page 3

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if their
logical flows overlap in time

Otherwise, they are sequential

Thread A Thread B Thread C
Examples:
m Concurrent: A & B, A&C |
= Sequential: B& C |
Time I
_20- 15213, F07

Posix Threads (Pthreads) Interface

Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
= Creating and reaping threads
e pthread_create
e pthread_join
m Determining your thread ID
e pthread_self
= Terminating threads
e pthread_cancel
® pthread_exit
e exit [terminates all threads] , ret [terminates current thread]
= Synchronizing access to shared variables
e pthread_mutex_init
e pthread_mutex_[un]lock
e pthread_cond_init
e pthread_cond_[timed]wait

22— 15213, F07

Threads vs. Processes

How threads and processes are similar
= Each has its own logical control flow
m Each can run concurrently with others
= Each is context switched

How threads and processes are different
= Threads share code and data, processes (typically) do not
= Threads are somewhat less expensive than processes
® Process control (creating and reaping) is twice as expensive as
thread control
® Linux/Pentium Il numbers:
» ~20K cycles to create and reap a process
» ~10K cycles (or less) to create and reap a thread

o1- 15213, F07

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/

#include "csapp.h"

void *thread(void *vargp);

int mainQ) {
pthread_t tid;

Pthread_create(&tid, NULL, thread, NULL);

Thread attributes
(usually NULL)
Thread arguments
(void *p)
Pthread_join(tid, NULL);
exit(0);

, \
(void **p)
/* thread routine */
void *thread(void *vargp) {
printf("Hello, world!\n");
return NULL;

23— 15-213, F07

Execution of Threaded“hello, world”

call Pthread_create()
Pthread_create() returns

call Pthread_join()

™ printfQ
main thread waits for return NULL;
peer thread to terminate (peer thread

terminates)

Pthread_join() returns

T

exit(Q)
terminates

main thread and
any peer threads

—24 - 15-213, F07

Thread-Based Concurrent Echo
Server

int main(int argc, char **argv)
{
int port = atoi(argv[1]);
struct sockaddr_in clientaddr;
int clientlen=sizeof(clientaddr);
pthread_t tid;
int listenfd = Open_listenfd(port);
while (1) {
int *connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, echo_thread, connfdp);
¥
3

= Spawn new thread for each client
= Pass it copy of connection file descriptor
= Note use of Malloc!

e Without corresponding free 15213, F07

Page 4

Thread-Based Concurrent Server
(cont)

/* thread routine */
void *echo_thread(void *vargp)

int connfd = *((int *)vargp);
Pthread_detach(pthread_self());
Free(vargp);

echo(connfd);

Close(connfd);

return NULL;

3

= Run thread in “detached” mode
© Runs independently of other threads
© Reaped when it terminates

= Free storage allocated to hold clientfd
® “Producer-Consumer” model

15-213, FO7

—26-

Process Execution Model

lient 2 data

Thread

= Multiple threads within single process
= Some state between them
® File descriptors

-27- 15-213, F0O7

Potential Form of Unintended Sharing

while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, echo_thread, (void *) &connfd);

X
3
Main thread stack
connfd = connfd,
Peer, stack
connfd = connfd, P |connfd = *vargp
Race!
fd Peer, stack
Jeeme= . [diargp
—28- Why would both copies of vargp point to same location? 15-213, F07

Issues With Thread-Based Servers

Must run “detached” to avoid memory leak
= At any pointin time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
® must be reaped (with pthread_join) to free memory resources
m Detached thread cannot be reaped or killed by other threads
@ resources are automatically reaped on termination

= Default state is joinable
e use pthread_detach(pthread_self()) to make detached

Must be careful to avoid unintended sharing.
= For example, what happens if we pass the address of connfd
to the thread routine?
e Pthread_create(&tid, NULL, thread, (void
*)&connfd) ;
All functions called by a thread must be thread-safe
= (next lecture)

29— 15-213, F07

Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads
m e.g., logging information, file cache

+ Threads are more efficient than processes

--- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!
= The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

= (next lecture)

_30- 15-213, FO7

Appr. #3: Event-Based Concurrent
Servers Using I/O Multiplexing

Maintain a pool of connected descriptors

Repeat the following forever:
= Use the Unix select function to block until:
@ (a) New connection request arrives on the listening descriptor
e (b) New data arrives on an existing connected descriptor
= If (a), add the new connection to the pool of connections
m If (b), read any available data from the connection
@ Close connection on EOF and remove it from the pool

_31- 15-213, FO7

Page 5

The select Function

select() sleeps until one or more file descriptors in the set readset
ready for reading

#include <sys/select.h>

int select(int maxfdpl, fd_set *readset, NULL, NULL, NULL);

readset
« Opaque bit vector (max FD_SETSIZE bits) that indicates membership in
a descriptor set
« If bit k is 1, then descriptor k is a member of the descriptor set

maxfdpl
« Maximum descriptor in descriptor set plus 1
« Tests descriptors 0, 1, 2, ..., maxfdpl - 1 for set membership

select() returns the number of ready descriptors and sets each bit of
readset to indicate the ready status of its corresponding descriptor

_32- 15-213, FO7

Macros for Manipulating Set
Descriptors

void FD_ZERO(fd_set *fdset);
= Turn off all bits in fdset

void FD_SET(int fd, fd_set *fdset);
= Turn on bit fd in fdset

void FD_CLR(int fd, fd_set *fdset);
= Turn off bit fd in fdset

int FD_ISSET(int fd, *fdset);
= |s bit fd in fdset turned on?

_a3- 15213, F07

Overall Structure
— Manage Pool of Connections

clientfd m listenfd: Listen for requests

Representing Pool of Clients

/*
* echoservers.c - A concurrent echo server based on select
*/

#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
int maxfd; /* largest descriptor in read_set */
fd_set read_set; /* set of all active descriptors */
fd_set ready_set; /* subset of descriptors ready for reading */
int nready; /* number of ready descriptors from select */
int maxi; /* highwater index into client array */
int clientfd[FD_SETSIZE]; /* set of active descriptors */
rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */

} pool;

int byte_cnt = 0; /* counts total bytes received by server */

_35- 15-213, F07

o 0 from new clients
1 7 Active = Active clients: Ones with a
2 2 valid connection
3 1) Use select to detect activity
Inactive
4 -1 = New request on listenfd
Z 12 Active m Request by active client
7 51 Required Activities
8 1 = Adding new clients
9 1 Never Used = Removing terminated clients
= Echoing
—-34- 15-213, F07
Pool Example
listenfd =3
= maxfd =12
clientfd = maxi =6
0 10 m read_set={3,4,5,7,10,12}
1 7 Active
2 4
3 1 _
4 T Inactive
5 12
6 5 Active
v -1
N -1
9 1 Never Used
36— 15-213, F07

Main Loop

int main(int argc, char **argv)

int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
struct sockaddr_in clientaddr;
static pool pool;

listenfd = Open_listenfd(argv[1]);
init_pool(listenfd, &pool);

while (1) {
pool.ready_set = pool.read_set;
pool.nready = Select(pool.maxfd+1l, &pool.ready_set,
NULL, NULL, NULL);

if (FD_ISSET(listenfd, &pool.ready_set)) {
connfd = Accept(listenfd, (SA *)&clientaddr,&clientlen);
add_client(connfd, &pool);

by
check_clients(&pool);

_37- 15-213, F07

Page 6

Pool Initialization

=z
i< FD_SETSIZE; i++)
p->clientfd[i] = -1;

/* Init listenfd is only member of select read set */
p->maxfd listenfd;

FD_ZERO(&p->read_set);

FD_SET(listenfd, &p->read_set);

_38- 15-213, FO7

Initial Pool

listenfd = 3
= maxfd =3

clientfd = maxi =-1
1 m read_set ={3}

> Never Used

© 00 N O U W N RO
“

_39- 15213, F07

Main Loop

int main(int argc, char **argv)

int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
struct sockaddr_in clientaddr;
static pool poo

tenfd = Open_listenfd(argv[1]);
-_pool(listenfd, &pool);

while (1) {
pool.ready_set = pool.read_set;
pool.nready = Select(pool.maxfd+1l, &pool.ready_set,
NULL, NULL, NULL);

if (FD_ISSET(listenfd, &pool.ready_set)) {
connfd = Accept(listenfd, (SA *)&clientaddr,&clientlen);
add_client(connfd, &pool);

3
check_clients(&pool);

—40 - 15-213, F07

Adding Client

void add_client(int connfd, pool *p) /* add connfd to pool p */

int i;

p->nready--;

for (i = 0; i < FD_SETSIZE; i++) /* Find available slot */
if (p->clientfd[i] < 0) {

p->clientfd[i] = connfd;
Rio_readinitb(&p->clientrio[i], connfd);

FD_SET(connfd, &p->read_set); /* Add desc to read set */

if (connfd > p->maxfd) /* Update max descriptor num */
p->maxfd = connfd;

if (i > p->maxi) /* Update pool high water mark */
p->maxi = i;

break;

3
if (i == FD_SETSIZE) /* Couldn®t find an empty slot */
app_error(*add_client error: Too many clients™);

—41- 15-213, F07

Adding Client with fd 11

listenfd = 3 = maxfd = 12

clientfd = maxi =6
0 mread_set={3,4,5,7,10,11,12}
7 Active
4

11
-1
12

Inactive

Active

© ® N ® o~ W N PO

-1 Never Used

—42 - 15-213, F07

Checking Clients

void check_clients(pool *p) { /* echo line from ready descs in pool p */
int i, connfd, n;
char buf[MAXLINE];
rio_t rio;

for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
connfd = p->clientfd[i];
rio = p->clientrio[i];

/* 1If the descriptor is ready, echo a text line from it */
if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
p->nready--;
if ((n = Rio_readlineb(&rio, buf, MAXLINE)) 1= 0) {
byte_cnt += n;
Rio_writen(connfd, buf, n);

else {/* EOF detected, remove descriptor from pool */
Close(connfd);
FD_CLR(connfd, &p->read_set);
p->clientfd[i] = -1;

Page 7

Concurrency Limitations

if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
p->nready--;

if ((n =[Rio_readlineb{&rio, buf, MAXLINE)) != 0) {

=

Does not return until
complete line received

m Current design will hang up if partial line transmitted
= Bad to have network code that can hang up if client does
something weird
® By mistake or maliciously
= Would require more work to implement more robust version

e Must allow each read to return only part of line, and reassemble
lines within server

_aa- 15-213, FO7

Pro and Cons of Event-

+ One logical control flow

ased Designs

+ Can single-step with a debugger

+ No process or thread control overhead
= Design of choice for high-performance Web servers and
search engines

- Significantly more complex to code than process- or
thread-based designs

- Hard to provide fine-grained concurrency
= E.g., our example will hang up with partial lines

—45- 15-213, F0O7

Approaches to Concurrency

Processes
m Hard to share resources: Easy to avoid unintended sharing
m High overhead in adding/removing clients

Threads
= Easy to share resources: Perhaps too easy
= Medium overhead
= Not much control over scheduling policies
= Difficult to debug
e Event orderings not repeatable
1/0 Multiplexing
= Tedious and low level
= Total control over scheduling
= Very low overhead
m Cannot create as fine grained a level of concurrency

—46 — 15-213, F07

Page 8

