
Page 1

System-Level I/O
October 31, 2007
System-Level I/O
October 31, 2007

TopicsTopics
Unix I/O
Robust reading and writing
Reading file metadata
Sharing files
I/O redirection
Standard I/O

15-213
“The course that gives CMU its Zip!”

lecture-18.ppt – 2 – 15-213, F’07

Unix FilesUnix Files
A Unix A Unix filefile is a sequence of is a sequence of mm bytes:bytes:

B0, B1, , Bk , , Bm-1

All I/O devices are represented as files:All I/O devices are represented as files:
/dev/sda2 (/usr disk partition)
/dev/tty2 (terminal)

Even the kernel is represented as a file:Even the kernel is represented as a file:
/dev/kmem (kernel memory image)
/proc (kernel data structures)

– 3 – 15-213, F’07

Unix File TypesUnix File Types
Regular fileRegular file

Binary or text file.
Unix does not know the difference!

Directory fileDirectory file
A file that contains the names and locations of other files.

Character special and block special filesCharacter special and block special files
Terminals (character special) and disks (block special)

FIFO (named pipe)FIFO (named pipe)
A file type used for interprocess communication

SocketSocket
A file type used for network communication between
processes

– 4 – 15-213, F’07

Unix I/OUnix I/O

The elegant mapping of files to devices allows kernel to The elegant mapping of files to devices allows kernel to
export simple interface called Unix I/O.export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a Key Unix idea: All input and output is handled in a
consistent and uniform way.consistent and uniform way.

Basic Unix I/O operations (system calls): Basic Unix I/O operations (system calls):
Opening and closing files

open()and close()
Changing the current file position (seek)

lseek (not discussed)

Reading and writing a file
read() and write()

– 5 – 15-213, F’07

Opening FilesOpening Files
Opening a file informs the kernel that you are getting Opening a file informs the kernel that you are getting

ready to access that file.ready to access that file.

Returns a small identifying integer Returns a small identifying integer file descriptorfile descriptor
fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life with Each process created by a Unix shell begins life with
three open files associated with a terminal:three open files associated with a terminal:

0: standard input
1: standard output
2: standard error

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}

– 6 – 15-213, F’07

Closing FilesClosing Files
Closing a file informs the kernel that you are finished Closing a file informs the kernel that you are finished

accessing that file.accessing that file.

Note: Always check return codes, even for seemingly Note: Always check return codes, even for seemingly
benign functions such as benign functions such as close()close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close");
exit(1);

}

Page 2

– 7 – 15-213, F’07

Reading FilesReading Files
Reading a file copies bytes from the current file Reading a file copies bytes from the current file

position to memory, and then updates file position.position to memory, and then updates file position.

Returns number of bytes read from file Returns number of bytes read from file fdfd into into bufbuf
Return type ssize_t is signed integer
nbytes < 0 indicates that an error occurred.
short counts (nbytes < sizeof(buf)) are possible and
are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}

– 8 – 15-213, F’07

Writing FilesWriting Files
Writing a file copies bytes from memory to the current file Writing a file copies bytes from memory to the current file

position, and then updates current file position.position, and then updates current file position.

Returns number of bytes written from Returns number of bytes written from bufbuf to file to file fdfd..
nbytes < 0 indicates that an error occurred.
As with reads, short counts are possible and are not errors!

Transfers Transfers up toup to 512 bytes from address 512 bytes from address bufbuf to file to file fdfd

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");
exit(1);

}

– 9 – 15-213, F’07

Unix I/O ExampleUnix I/O Example

Copying standard input to standard output one byte at a Copying standard input to standard output one byte at a
time.time.

Note the use of error handling wrappers for read and Note the use of error handling wrappers for read and
write (Appendix B).write (Appendix B).

#include "csapp.h"

int main(void)
{

char c;

while(Read(STDIN_FILENO, &c, 1) != 0)
Write(STDOUT_FILENO, &c, 1);

exit(0);
}

– 10 – 15-213, F’07

Dealing with Short CountsDealing with Short Counts
Short counts can occur in these situations:Short counts can occur in these situations:

Encountering (end-of-file) EOF on reads.
Reading text lines from a terminal.
Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:Short counts never occur in these situations:
Reading from disk files (except for EOF)
Writing to disk files.

One way to deal with short counts in your code:One way to deal with short counts in your code:
Use the RIO (Robust I/O) package from your textbook’s
csapp.c file (Appendix B)

– 11 – 15-213, F’07

The RIO PackageThe RIO Package
RIO is a set of wrappers that provide efficient and robust I/O iRIO is a set of wrappers that provide efficient and robust I/O in n

applications such as network programs that are subject to short applications such as network programs that are subject to short
counts.counts.

RIO provides two different kinds of functionsRIO provides two different kinds of functions
Unbuffered input and output of binary data

rio_readn and rio_writen

Buffered input of binary data and text lines
rio_readlineb and rio_readnb
Buffered RIO routines are thread-safe and can be interleaved arbitrarily on
the same descriptor.

Download from Download from
csapp.cs.cmu.edu/public/ics/code/src/csapp.ccsapp.cs.cmu.edu/public/ics/code/src/csapp.c
csapp.cs.cmu.edu/public/ics/code/include/csapp.hcsapp.cs.cmu.edu/public/ics/code/include/csapp.h

– 12 – 15-213, F’07

Buffered I/O: MotivationBuffered I/O: Motivation
I/O Applications Read/Write One Character at a TimeI/O Applications Read/Write One Character at a Time

getc, putc, ungetc
gets

Read line of text, stopping at newline

Implementing as Calls to Unix I/O ExpensiveImplementing as Calls to Unix I/O Expensive
Read & Write involve require Unix kernel calls

> 10,000 clock cycles

Buffered ReadBuffered Read
Use Unix read to grab block of characters
User input functions take one character at a time from buffer

Refill buffer when empty

unreadalready read

Buffer

Page 3

– 13 – 15-213, F’07

unread

Buffered I/O: ImplementationBuffered I/O: Implementation
File has associated buffer to hold bytes that have been read
from file but not yet read by user code

already read

typedef struct {
int rio_fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

Buffer

rio_buf
rio_bufptr

rio_cnt

– 14 – 15-213, F’07

File MetadataFile Metadata
MetadataMetadata is data about data, in this case file data.is data about data, in this case file data.
Maintained by kernel, accessed by users with the Maintained by kernel, accessed by users with the stat stat

and and fstatfstat functions.functions.
/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};

– 15 – 15-213, F’07

Example of Accessing File MetadataExample of Accessing File Metadata
/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

int main (int argc, char **argv)
{

struct stat stat;
char *type, *readok;

Stat(argv[1], &stat);
if (S_ISREG(stat.st_mode))

type = "regular";
else if (S_ISDIR(stat.st_mode))

type = "directory";
else

type = "other";
if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";
else

readok = "no";

printf("type: %s, read: %s\n", type, readok);
exit(0);

}

unix> ./statcheck statcheck.c
type: regular, read: yes
unix> chmod 000 statcheck.c
unix> ./statcheck statcheck.c
type: regular, read: no
unix> ./statcheck ..
type: directory, read: yes
unix> ./statcheck /dev/kmem
type: other, read: yes

– 16 – 15-213, F’07

Accessing DirectoriesAccessing Directories
The only recommended operation on a directory is to The only recommended operation on a directory is to

read its entriesread its entries
dirent structure contains information about a directory entry
DIR structure contains information about directory while
stepping through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;
struct dirent *de;
...
if (!(directory = opendir(dir_name)))

error("Failed to open directory");
...
while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);
}
...
closedir(directory);

}

– 17 – 15-213, F’07

Opening FilesOpening Files
Opening a file informs the kernel that you are getting Opening a file informs the kernel that you are getting

ready to access that file.ready to access that file.

Returns a small identifying integer Returns a small identifying integer file descriptorfile descriptor
fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life with Each process created by a Unix shell begins life with
three open files associated with a terminal:three open files associated with a terminal:

0: standard input
1: standard output
2: standard error

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}

– 18 – 15-213, F’07

How the Unix Kernel Represents
Open Files
How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinct open disk Two descriptors referencing two distinct open disk

files. Descriptor 1 (files. Descriptor 1 (stdoutstdout) points to terminal, and) points to terminal, and
descriptor 4 points to open disk file.descriptor 4 points to open disk file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

Page 4

– 19 – 15-213, F’07

File SharingFile Sharing
Two distinct descriptors sharing the same disk file Two distinct descriptors sharing the same disk file

through two distinct open file table entriesthrough two distinct open file table entries
E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size
File type

File A

File B

– 20 – 15-213, F’07

How Processes Share FilesHow Processes Share Files
A child process inherits its parentA child process inherits its parent’’s open files. Here is s open files. Here is

the situation immediately after a the situation immediately after a forkfork

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor
tables

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=2

...

File pos
refcnt=2

...
Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size
File type

File access

...

File size
File type

File A

File B

– 21 – 15-213, F’07

I/O RedirectionI/O Redirection
Question: How does a shell implement I/O redirection?Question: How does a shell implement I/O redirection?

unix> ls > foo.txt

Answer: By calling the Answer: By calling the dup2(oldfd, dup2(oldfd, newfdnewfd)) functionfunction
Copies (per-process) descriptor table entry oldfd to entry
newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

– 22 – 15-213, F’07

I/O Redirection ExampleI/O Redirection Example
Before calling Before calling dup2(4,1)dup2(4,1), , stdoutstdout (descriptor 1) points (descriptor 1) points

to a terminal and descriptor 4 points to an open disk to a terminal and descriptor 4 points to an open disk
file.file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

– 23 – 15-213, F’07

I/O Redirection Example (cont)I/O Redirection Example (cont)
After calling After calling dup2(4,1)dup2(4,1), , stdoutstdout is now redirected to the is now redirected to the

disk file pointed at by descriptor 4.disk file pointed at by descriptor 4.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=0

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A

File B

– 24 – 15-213, F’07

Standard I/O FunctionsStandard I/O Functions
The C standard library (The C standard library (libc.alibc.a) contains a collection of) contains a collection of

higherhigher--level level standard I/O standard I/O functionsfunctions
Documented in Appendix B of K&R.

Examples of standard I/O functions:Examples of standard I/O functions:
Opening and closing files (fopen and fclose)
Reading and writing bytes (fread and fwrite)
Reading and writing text lines (fgets and fputs)
Formatted reading and writing (fscanf and fprintf)

Page 5

– 25 – 15-213, F’07

Standard I/O StreamsStandard I/O Streams
Standard I/O models open files as Standard I/O models open files as streamsstreams

Abstraction for a file descriptor and a buffer in memory.
Similar to buffered RIO

C programs begin life with three open streams (defined C programs begin life with three open streams (defined
in in stdio.hstdio.h))

stdin (standard input)
stdout (standard output)
stderr (standard error)
#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

– 26 – 15-213, F’07

Buffering in Standard I/OBuffering in Standard I/O
Standard I/O functions use buffered I/OStandard I/O functions use buffered I/O

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf += 6, 6);

– 27 – 15-213, F’07

Standard I/O Buffering in ActionStandard I/O Buffering in Action
You can see this buffering in action for yourself, using You can see this buffering in action for yourself, using

the always fascinating Unix the always fascinating Unix stracestrace program:program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...) = 6
...
_exit(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

– 28 – 15-213, F’07

Unix I/O vs. Standard I/O vs. RIOUnix I/O vs. Standard I/O vs. RIO
Standard I/O and RIO are implemented using lowStandard I/O and RIO are implemented using low--level level

Unix I/O.Unix I/O.

Which ones should you use in your programs?Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

– 29 – 15-213, F’07

Pros and Cons of Unix I/OPros and Cons of Unix I/O
ProsPros

Unix I/O is the most general and lowest overhead form of I/O.
All other I/O packages are implemented using Unix I/O
functions.

Unix I/O provides functions for accessing file metadata.

ConsCons
Dealing with short counts is tricky and error prone.
Efficient reading of text lines requires some form of
buffering, also tricky and error prone.
Both of these issues are addressed by the standard I/O and
RIO packages.

– 30 – 15-213, F’07

Pros and Cons of Standard I/OPros and Cons of Standard I/O
Pros:Pros:

Buffering increases efficiency by decreasing the number of
read and write system calls.
Short counts are handled automatically.

Cons:Cons:
Provides no function for accessing file metadata
Standard I/O is not appropriate for input and output on
network sockets
There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

Page 6

– 31 – 15-213, F’07

Choosing I/O FunctionsChoosing I/O Functions
General rule: Use the highestGeneral rule: Use the highest--level I/O functions you level I/O functions you

can.can.
Many C programmers are able to do all of their work using
the standard I/O functions.

When to use standard I/O?When to use standard I/O?
When working with disk or terminal files.

When to use raw Unix I/O When to use raw Unix I/O
When you need to fetch file metadata.
In rare cases when you need absolute highest performance.

When to use RIO?When to use RIO?
When you are reading and writing network sockets or pipes.
Never use standard I/O or raw Unix I/O on sockets or pipes.

– 32 – 15-213, F’07

For Further InformationFor Further Information
The Unix bible:The Unix bible:

W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2nd Edition, Addison
Wesley, 2005.

Updated from Stevens’ 1993 book

Stevens is arguably the best technical writer ever.Stevens is arguably the best technical writer ever.
Produced authoritative works in:

Unix programming
TCP/IP (the protocol that makes the Internet work)
Unix network programming
Unix IPC programming.

Tragically, Stevens died Sept 1, 1999Tragically, Stevens died Sept 1, 1999
But others have taken up his legacy

– 33 – 15-213, F’07

Unix I/O Key CharacteristicsUnix I/O Key Characteristics
Classic Unix/Linux I/O:Classic Unix/Linux I/O:
I/O operates on linear streams I/O operates on linear streams
of Bytesof Bytes

Can reposition insertion
point and extend file at end

I/O tends to be synchronousI/O tends to be synchronous
Read or write operation
block until data has been
transferred

Fine grained I/OFine grained I/O
One key-stroke at a time
Each I/O event is handled by
the kernel and an
appropriate process

Mainframe I/O:Mainframe I/O:
I/O operates on structured I/O operates on structured
recordsrecords

Functions to locate, insert,
remove, update records

I/O tends to be asynchronousI/O tends to be asynchronous
Overlap I/O and computation
within a process

Coarse grained I/OCoarse grained I/O
Process writes “channel
programs” to be executed
by the I/O hardware
Many I/O operations are
performed autonomously
with one interrupt at
completion

– 34 – 15-213, F’07

Unbuffered RIO Input and OutputUnbuffered RIO Input and Output
Same interface as Unix Same interface as Unix readread and and writewrite

Especially useful for transferring data on network Especially useful for transferring data on network
socketssockets

rio_readn returns short count only it encounters EOF.
Only use it when you know how many bytes to read

rio_writen never returns a short count.
Calls to rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor.

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

– 35 – 15-213, F’07

Implementation of rio_readnImplementation of rio_readn
/*
* rio_readn - robustly read n bytes (unbuffered)
*/
ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* interrupted by sig
handler return */

nread = 0; /* and call read() again */
else

return -1; /* errno set by read() */
}
else if (nread == 0)

break; /* EOF */
nleft -= nread;
bufp += nread;

}
return (n - nleft); /* return >= 0 */

}

– 36 – 15-213, F’07

Buffered RIO Input FunctionsBuffered RIO Input Functions
Efficiently read text lines and binary data from a file Efficiently read text lines and binary data from a file

partially cached in an internal memory bufferpartially cached in an internal memory buffer

rio_readlineb reads a text line of up to maxlen bytes from
file fd and stores the line in usrbuf.

Especially useful for reading text lines from network sockets.
rio_readnb reads up to n bytes from file fd.
Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor.

Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Page 7

– 37 – 15-213, F’07

RIO ExampleRIO Example
Copying the lines of a text file from standard input to Copying the lines of a text file from standard input to

standard output.standard output.

#include "csapp.h"

int main(int argc, char **argv)
{

int n;
rio_t rio;
char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, n);
exit(0);

}

– 38 – 15-213, F’07

Fun with File Descriptors (1)Fun with File Descriptors (1)

What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1, fd2, fd3;
char c1, c2, c3;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
fd2 = Open(fname, O_RDONLY, 0);
fd3 = Open(fname, O_RDONLY, 0);
Dup2(fd2, fd3);
Read(fd1, &c1, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
return 0;

}

– 39 – 15-213, F’07

Fun with File Descriptors (2)Fun with File Descriptors (2)

What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1;
int s = getpid() & 0x1;
char c1, c2;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
Read(fd1, &c1, 1);
if (fork()) {

/* Parent */
sleep(s);
Read(fd1, &c2, 1);
printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else {
/* Child */
sleep(1-s);
Read(fd1, &c2, 1);
printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}
return 0;

}

– 40 – 15-213, F’07

Fun with File Descriptors (3)Fun with File Descriptors (3)

What would be contents of resulting file?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1, fd2, fd3;
char *fname = argv[1];
fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);
Write(fd1, "pqrs", 4);
fd3 = Open(fname, O_APPEND|O_WRONLY, 0);
Write(fd3, "jklmn", 5);
fd2 = dup(fd1); /* Allocates descriptor */
Write(fd2, "wxyz", 4);
Write(fd3, "ef", 2);
return 0;

}

