
Introduction to
Computer Systems

Introduction to
Computer Systems

Topics:Topics:
Theme
How this fits within CS curriculum
Five great realities of computer systems

15-213 F ’07lecture-01a.ppt

15-213
“The Class That Gives CMU Its Zip!”™

Greg Ganger
August 29, 2007

(adapted from Randal E. Bryant’s slides)

– 2 – 15-213, F’07

15-213 Theme15-213 Theme
Abstraction is good, but don’t forget reality!

Most programming classes emphasize abstractionMost programming classes emphasize abstraction
Abstract data types
Asymptotic analysis

These abstractions have limitsThese abstractions have limits
And those limits can result in nasty bugs
Need to understand underlying implementations

Useful outcomesUseful outcomes
Become more effective programmers

Able to find and eliminate bugs efficiently
Able to tune program performance

Prepare for later “systems” classes in CS & ECE
Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

– 3 – 15-213, F’07

Role within CurriculumRole within Curriculum

Transition from Abstract to Transition from Abstract to
Concrete!Concrete!

From: high-level language
model
To: underlying implementation

CS 211
Fundamental

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimization

Data Structures
Applications
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 113
C Programming

– 4 – 15-213, F’07

Course PerspectiveCourse Perspective
Most Most ““SystemsSystems”” Courses are BuilderCourses are Builder--CentricCentric

Computer Architecture
Design pipelined processor in Verilog

Operating Systems
Implement large portions of operating system

Compilers
Write compiler for simple language

Networking
Implement and simulate network protocols

– 5 – 15-213, F’07

Course Perspective (Cont.)Course Perspective (Cont.)
1515--213 is Programmer213 is Programmer--CentricCentric

Purpose is to show how by knowing more about the
underlying system, one can be more effective as a programmer
Enable you to

Write programs that are more reliable and efficient
Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
Not just a course for dedicated hackers

We bring out the hidden hacker in everyone

Lets talk about some example realities

– 6 – 15-213, F’07

Great Reality #1Great Reality #1
IntInt’’ss are not Integers, Floatare not Integers, Float’’s are not s are not RealsReals

ExamplesExamples
Is x2 ≥ 0?

Float’s: Yes!
Int’s:

» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??

Is (x + y) + z = x + (y + z)?
Unsigned & Signed Int’s: Yes!
Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

– 7 – 15-213, F’07

Computer ArithmeticComputer Arithmetic
Should not generate random valuesShould not generate random values

Arithmetic operations have important mathematical properties

But, cannot assume But, cannot assume ““usualusual”” propertiesproperties
Due to finiteness of representations
Integer operations satisfy “ring” properties

Commutativity, associativity, distributivity
Floating point operations satisfy “ordering” properties

Monotonicity, values of signs

ObservationObservation
Need to understand which abstractions apply in which contexts
Important issues for compiler writers and serious application
programmers

– 8 – 15-213, F’07

Great Reality #2Great Reality #2
Memory Matters: Memory Matters: Random Access Memory is anRandom Access Memory is an

unun--physical abstractionphysical abstraction

Memory is not unboundedMemory is not unbounded
It must be allocated and managed
Many applications are memory dominated

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform
Cache and virtual memory effects can greatly affect program
performance
Adapting program to characteristics of memory system can
lead to major speed improvements

– 9 – 15-213, F’07

Memory Referencing ErrorsMemory Referencing Errors
C and C++ do not provide any memory protectionC and C++ do not provide any memory protection

Out of bounds array references
Invalid pointer values
Abuses of malloc/free

Can lead to nasty bugs (and painful debuggingCan lead to nasty bugs (and painful debugging
Whether or not bug has any effect depends on system+compiler
Action at a distance

Corrupted object logically unrelated to one being accessed
Effect of bug may be first observed long after it is generated

How can I deal with this?How can I deal with this?
Never make mistakes
Program in Java, Lisp, or ML
Understand what possible interactions may occur
Use or develop tools to detect referencing errors – 10 – 15-213, F’07

Memory Referencing Bug ExampleMemory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

– 11 – 15-213, F’07

Referencing Bug ExplanationReferencing Bug Explanation

C does not implement bounds checking
Out of range write can affect other parts of program state

Saved State

d7 … d4

d3 … d0

a[1]

a[0] 0

1

2

3

4

Location accessed
by fun(i)

Stack

– 12 – 15-213, F’07

Great Reality #3Great Reality #3
ThereThere’’s more to performance than asymptotic s more to performance than asymptotic

complexitycomplexity

Constant factors matter too!Constant factors matter too!
Easily see 10:1 performance range depending on how code
written
Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
How programs compiled and executed
How to measure program performance and identify
bottlenecks
How to improve performance without destroying code
modularity and generality

– 13 – 15-213, F’07

Memory System Performance
Example
Memory System Performance
Example

Hierarchical memory organization (caches)
Performance depends on access patterns

Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

59,393,288 clock cycles 1,277,877,876 clock cycles

21.5 times slower!
(Measured on 2GHz

Intel Pentium 4)

– 14 – 15-213, F’07

Great Reality #4Great Reality #4
YouYou’’ve got to know assemblyve got to know assembly

Chances are, youChances are, you’’ll never write program in assemblyll never write program in assembly
Compilers are much better & more patient than you are

But, understanding assembly enables one to But, understanding assembly enables one to
understand machineunderstand machine--level execution behaviorlevel execution behavior

Behavior of programs in presence of bugs
When high-level language model breaks down

Tuning program performance
Understanding sources of program inefficiency

Implementing system software
Compiler has machine code as target
Operating systems must manage device and process state

Creating / fighting malware
x86 assembly is the language of choice

– 15 – 15-213, F’07

Great Reality #5Great Reality #5
Computers do more than execute programsComputers do more than execute programs

They need to get data in and outThey need to get data in and out
I/O system critical to program reliability and performance

They communicate with each other over networksThey communicate with each other over networks
Many system-level issues arise in presence of network

Concurrent operations by autonomous processes
Coping with unreliable media
Cross platform compatibility
Complex performance issues

– 16 – 15-213, F’07

What’s nextWhat’s next
Data representation (Fri): bits, bytes, and integersData representation (Fri): bits, bytes, and integers

Reading
2.1-2.3

Suggested problems
2.44, 2.45, 2.49, 2.54

First lab will be handed out
and it will be due two weeks from today

Welcome to 15-213! ☺

