

SI	RAN	l vs	DRA	M S	umi	mary	/	
		Trans. per bit	Access time	Needs refresh?	Needs EDC?	Cost	Applications]
	SRAM	4 or 6	1X	No	Maybe	100x	cache memories	
	DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers	
								-
- 3 -							15-213	3, F'07

Conventional DRAM Organization

d x w DRAM:

• dw total bits organized as d supercells of size w bits

Enhanced DRAMs	
DRAM Cores with better interface logic and faster I/O :	
Synchronous DRAM (SDRAM)	
Uses a conventional clock signal instead of asynchronous	control
Double data-rate synchronous DRAM (DDR SDRAM)	
Double edge clocking sends two bits per cycle per pin	
■ RamBus™ DRAM (RDRAM)	
Uses faster signaling over fewer wires (source directed clo with a Transaction oriented interface protocol	ocking)
Obsolete Technologies :	
 Fast page mode DRAM (FPM DRAM) Allowed re-use of row-addresses 	
Extended data out DRAM (EDO DRAM)	
Enhanced FPM DRAM with more closely spaced CAS signa	als.
 Video RAM (VRAM) Dual ported FPM DRAM with a second, concurrent, serial in 	nterface
 Extra functionality DRAMS (CDRAM, GDRAM) Added SRAM (CDRAM) and support for graphics operation 	is (GDRAM)
- 8 -	15-213, F'07

Traditional Bus Structure Connecting CPU and Memory

A bus is a collection of parallel wires that carry address, data, and control signals.

Buses are typically shared by multiple devices.

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Disk Geometry

Disks consist of platters, each with two surfaces. Each surface consists of concentric rings called tracks. Each track consists of sectors separated by gaps.

metric	1980	1985	1990	1995	2000	2005	2005:1980
\$/MB	19,200	2,900	320	256	100	75	256
access (ns)	300	150	35	15	12	10	30
\$/MB access (ns)	8,000 375	880 200	100 100	30 70	1 60	0.20 50	40,000 8
\$/MB	8,000	880	100	30	1	0.20	40,000
typical size(MB)	0.064	0.256	4	16	64	1,000	15,000
Disk	1980	1985	1990	1995	2000	2005	2005:1980
meuro							
A MAD		400	~		0.05		40.000
\$/MB	500	100	8	0.30	0.05	0.001	10,000

1980	1985	1990	1995	2000	2005	2005:1980
8080	286	386	Pentium	P-III	P-4	
1 1,000	6 166	20 50	150 6	750 1.3	3,000 0.3	3,000 3,333
	1980 8080 1 1,000	1980 1985 8080 286 1 6 1,000 166	1980 1985 1990 8080 286 386 1 6 20 1,000 166 50	1980 1985 1990 1995 8080 286 386 Pentium 1 6 20 150 1,000 166 50 6	1980 1985 1990 1995 2000 8080 286 386 Pentium P-III 1 6 20 150 750 1,000 166 50 6 1.3	1980 1985 1990 1995 2000 2005 8080 286 386 Pentium P-III P-4 1 6 20 150 750 3,000 1,000 166 50 6 1.3 0.3

Page 9

Summary The memory hierarchy is fundamental consequence of maintaining the *random access memory* abstraction and practical limits on cost and power consumption. Trend: the speed gap between CPU, memory and mass storage continues to widen, thus leading

towards deeper hierarchies.

- 38 -

15-213, F'07