
Recitation 1

Parenthesis Matching

1.1 Announcements

• Welcome to 15-210!

• The course website is http://www.cs.cmu.edu/˜15210/. It contains the syl-
labus, schedule, library documentation, staff contact information, and other useful re-
sources.

• We will be using Piazza (https://piazza.com/) as a hub for course announce-
ments and general questions pertaining to the course. Please check it frequently to make
sure you don’t miss anything.

• The first homework assignment, ParenLab, has been released! It’s due Friday at 5:00pm.

• Homeworks will be distributed through Autolab (https://autolab.andrew.cmu.
edu/). You will submit coding tasks on Autolab, and written tasks on Gradescope
(https://gradescope.com/).

• ParenLab is conceptually difficult, so be sure to get started early.

1

http://www.cs.cmu.edu/~15210/
https://piazza.com/
https://autolab.andrew.cmu.edu/
https://autolab.andrew.cmu.edu/
https://gradescope.com/

2 RECITATION 1. PARENTHESIS MATCHING

1.2 Parentheses and Matched Sequences

Suppose you are given a sequence of parentheses. You want to determine if it is matched,
meaning “properly nested”. Let’s begin by defining this more carefully.

Definition 1.1. A matched sequence of parentheses p is defined inductively as

p ::= 〈〉 | p p | (p)

In other words, a matched sequence is one of (a) the empty sequence, (b) the concate-
nation of two matched sequences, or (c) a pair of parentheses surrounding a matched
sequence.

To be consistent with ParenLab, we’ll implement parentheses as a custom datatype given in a
structure Paren.

structure Paren =
struct

datatype t = L | R
...

end

Our goal is to implement a function

val parenMatch : Paren.t Seq.t → bool

where (parenMatch S) determines whether or not S is a matched sequence.

Note that you will need to familiarize yourself with the 210 library. Documentation can be
found on the course website at http://www.cs.cmu.edu/˜15210/docs/. In particu-
lar, you should look closely at the SEQUENCE interface and the ArraySequence implemen-
tation.

Built: January 23, 2017

http://www.cs.cmu.edu/~15210/docs/

1.3. FROM LEFT TO RIGHT 3

1.3 From Left to Right

Task 1.2. Implement parenMatch using the sequence function iterate.

1.4 Divide and Conquer

Task 1.3. Implement parenMatch with a divide-and-conquer approach. Your imple-
mentation should satisfy the following work and span recurrences where n is the length
of the input.

W (n) = 2 W
(n
2

)
+O(1)

S(n) = S
(n
2

)
+O(1)

Also briefly justify that your implementation meets the cost bounds shown. You should
assume Seq = ArraySequence for cost bounds.

Hint: to solve this problem, you’ll only need the sequence function splitMid and some
basic arithmetic. Check out the documentation of splitMid on the website if you are not
already familiar. You should also use Primitives.par for parallelism – the code
Primitives.par (fn () ⇒ e1, fn () ⇒ e2) implements the parallel pair (e1 ‖ e2).
It is logically equivalent to just writing (e1, e2), except that the two expressions are evaluated in
parallel.

1.5 Additional Exercises

Exercise 1.4. As implied by the name, the ArraySequence implementation of se-
quences lays out its elements in an array. Describe how to implement splitMid (and
in general, subseq) in O(1) work and span.

Built: January 23, 2017

4 RECITATION 1. PARENTHESIS MATCHING

.

Built: January 23, 2017

