
Recitation 12

Dynamic Programming

12.1 Announcements

• DPLab has been released and is due Dec 1.

• Happy Thanksgiving

69



70 RECITATION 12. DYNAMIC PROGRAMMING

12.2 Matrix Chain Product

Definition 12.1. In the matrix chain product problem, we are attempting to find the
cheapest way to multiply a chain of n matrices. I.e., determine a parenthesization of the
expression

A1 × A2 × . . .× An

such that cost of evaluating the expression is minimized.

Task 12.2. Write a top-down solution to the matrix chain product problem. Specifically,
assuming you have a cost function

val cost : int * int * int → real

where cost(x, y, z) is the cost of multiplying two matrices with dimension (x, y) and
(y, z), write a function

val MCP : (int * int) Seq.t → real

which takes a sequence of pairs (hi, wi) (the dimensions of the ith matrix) and returns
the cheapest cost of multiplying those matrices.

Be sure to clearly specify your subproblems. Determine the work of your algorithm by
assuming that each distinct subproblem is computed only once. Determine the span of
your algorithm by describing the DAG of subproblem dependencies and identifying a
bottom-up ordering of the subproblems.

Built: November 20, 2017



12.2. MATRIX CHAIN PRODUCT 71

The Bellman-Ford algorithm, which we covered in the shortest path section, is another ex-
ample of dynamic programming.

Task 12.3. The code for Bellman-Ford given in the textbook is written in a bottom-up
fashion. Rewrite this code in a top-down style. Once again, be sure to identify the
subproblems and the DAG of dependencies. Use these observations to re-derive the
work and span of Bellman-Ford.

Built: November 20, 2017



72 RECITATION 12. DYNAMIC PROGRAMMING

12.3 Additional Exercises

Exercise 12.4. Describe the DAG of dependencies between subproblems δ(v, k) in the
Bellman-Ford algorithm; i.e., each vertex is a pair (v, k), and there is an arc from (v′, k′)
to (v, k) if we need to know the value δ(v′, k′) in order to calculate δ(v, k).

0

1

2

3

1

8

4

1

7

Draw the dependency DAG for the example graph given above.

Built: November 20, 2017


	Dynamic Programming
	Announcements
	Matrix Chain Product
	Additional Exercises


