
Recitation 11

Graph Contraction and MSTs

11.1 Announcements

• SegmentLab has been released, and is due Monday afternoon. It’s worth 135 points.

• Midterm 2 is on Friday, April 8.

59

60 RECITATION 11. GRAPH CONTRACTION AND MSTS

11.2 Contraction

In the textbook, we presented an algorithm for counting the number of connected components
in a graph:

Algorithm 11.1. (Algorithm 16.20 in the textbook.)

1 countComponents (V,E) =
2 if |E| = 0 then |V | else
3 let
4 (V ′, P) = starPartition (V,E)
5 E′ =

{
(P [u], P [v]) : (u, v) ∈ E

∣∣P [u] 6= P [v]
}

6 in
7 countComponents (V ′, E′)
8 end

Now, suppose we implemented star partitioning for enumerated graphs as follows:

val enumStarPartition : (int * int) Seq.t * int → int Seq.t

Specifically, given a graph represented as a sequence of edges E where every vertex is labeled
0 ≤ v < n, (enumStarPartition (E, n)) returns a mapping P where P [v] is the super-
vertex containing v. (If v was a star center or was unable to contract, then P [v] = v.)

Task 11.2. Implement a function enumCountComponents which counts the number
of components of an enumerated graph. It should take in a graph represented as (E, n)
and use enumStarPartition internally. (Hint: be careful with the value n... there
is something subtle going on here!)

A direct but incorrect translation of the original code might look like this:

1 fun incorrectCountComponents (E,n) =
2 if |E| = 0 then n else
3 let
4 val P = enumStarPartition (E,n)
5 val E′ =

〈
(P [u], P [v]) : (u, v) ∈ E

∣∣P [u] 6= P [v]
〉

6 in
7 incorrectCountComponents (E′, n)
8 end

The problem with this code is that it doesn’t actually count the number of connected compo-
nents, despite performing the contraction correctly. This is because we never modify the value
n.

Built: March 28, 2016

11.2. CONTRACTION 61

A first step in fixing the issue is to add a line after line 5 which counts the number of distinct
vertices in E ′. Specifically, we use P to identify which vertices no longer exist, filter them out,
then simply take the length of the resulting sequence:

val n′ =
∣∣〈v : 0 ≤ v < n |P [v] = v〉

∣∣
We could then pass n′ in to the recursive call rather than n. However, we now notice an even
bigger problem: not all vertices in E ′ are labeled 0 ≤ v < n′.

What we really need to do is construct a new labeling within the range [0, n′). We can do so
by marking each each contracted vertex with a 0 and each remaining vertex with a 1 and running
a +-scan. This determines a sequence P ′ which maps each remaining vertex to a unique label
in the range [0, n′). This step also conveniently calculates n′. At the end of the round, when we
promote edges by relabeling their endpoints, we have to further relabel them according to P ′.
The code is as follows.

Algorithm 11.3. Counting connected components in an enumerated graph.

1 fun enumCountComponents (E,n) =
2 if |E| = 0 then n else
3 let
4 val P = enumStarPartition (E,n)
5 fun isAlive v = if P [v] = v then 1 else 0
6 val (P ′, n′) = Seq.scan + 0 〈isAlive(v) : 0 ≤ v < n〉
7 val E′ =

〈
(P ′[P [u]], P ′[P [v]]) : (u, v) ∈ E

∣∣P [u] 6= P [v]
〉

8 in
9 enumCountComponents (E′, n′)

10 end

11.2.1 Cost Bounds

Task 11.4. Recall that a forest is a collection of trees. What are the work
and span of enumCountComponents when applied to a forest? Assume that
(enumStarPartition (E, n)) requires O(n+ |E|) work and O(log n) span.

Line 6 of enumCountComponents clearly requires O(n) work and O(log n) span. Line
7 is just a map followed by a filter, and therefore requires O(m) work and O(log n) span.
But how do n and m change, round-to-round?

Regarding n, we recall that star-partitioning removes at least n/4 vertices in expectation,
and therefore we expect the number of vertices to decrease geometrically.

For general graphs, we can’t say that m decreases geometrically. However, a tree has n− 1
edges, and therefore m is initially upper bounded by n − 1. Furthermore, on each round,

Built: March 28, 2016

62 RECITATION 11. GRAPH CONTRACTION AND MSTS

exactly one edge is deleted for every vertex which is deleted. Therefore, for forests and trees, m
decreases geometrically during contraction. Therefore the total work and span of this algorithm
for an input forest of n vertices are O(n) and O(log2 n), respectively.

11.3 Borůvka’s Algorithm

The textbook describes two versions of Borůvka’s algorithm: one which performs tree contrac-
tion at each round, and another which performs a single round of star contraction at each round.
We will be using the latter, since it has better overall span (O(log2 n) rather than O(log3 n)).

Task 11.5. Run Borůvka’s algorithm on the following graph. Draw the graph at each
round, and identify which edges are MST edges. Use the coin flips specified.

1

2

3

4

7

6

9

8

10

5

6

3 2

2

8

8
9

9

7

9

5

4

1
4

3

18

Vertices
Round 1 2 3 4 5 6 7 8 9 10

0 H T H T T H T H T T
1 T H T T T H
2 T H T

Built: March 28, 2016

11.3. BORŮVKA’S ALGORITHM 63

Round 0:

6

3 2

9

8

8
18

9

7
2

9

5

4

1
4

3

1

2

3

4

5

6

7
8

9

10

tails

heads

minE

inMST

Round 1:

6

3 2

9

8

8

18

9

7

2

9

4
3

1

2

3

6

8

10
tails

heads

minE

inMST

Round 2:

7
9

18
8

9

9
2

6

10

tails

heads

minE

inMST

Built: March 28, 2016

64 RECITATION 11. GRAPH CONTRACTION AND MSTS

11.4 Additional Exercises

Exercise 11.6. In graph theory, an independent set is a set of vertices for which no two
vertices are neighbors of one another. The maximal independent set (MIS) problem is
defined as follows:

For a graph (V,E), find an independent set I ⊆ V such that for all v ∈
(V \ I), I ∪ {v} is not an independent set.a

Design an efficient parallel algorithm based on graph contraction which solves the MIS
problem.

aThe condition that we cannot extend such an independent set I with another vertex is what makes
it “maximal.” There is a closely related problem called maximum independent set where you find the
largest possible I . However, this problem turns out to be NP-hard!

Built: March 28, 2016

	Graph Contraction and MSTs
	Announcements
	Contraction
	Cost Bounds

	Boruvka's Algorithm
	Additional Exercises

