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• Verify: There are 18 pages in this examination, comprising 8 questions worth a total of 152
points. The last 2 pages are an appendix with costs of sequence, set and table operations.

• Time: You have 180 minutes to complete this examination.

• Goes without saying: Please answer all questions in the space provided with the question.
Clearly indicate your answers.

• Beware: You may refer to your two¡ double-sided 81
2 × 11in sheet of paper with notes, but

to no other person or source, during the examination.

• Primitives: In your algorithms you can use any of the primitives that we have covered in
the lecture. A reasonably comprehensive list is provided at the end.

• Code: When writing your algorithms, you can use ML syntax but you don’t have to. You
can use the pseudocode notation used in the notes or in class. For example you can use the
syntax that you have learned in class. In fact, in the questions, we use the pseudo rather
than the ML notation.

Sections

A 9:30am - 10:20am Edward/Angie
B 10:30am - 11:20am Jake/Narain
C 12:30pm - 1:20pm Sonya/Anisha
D 12:30pm - 1:20pm Nick/Yongshan
E 1:30pm - 2:20pm William/Bryan
F 1:30pm - 2:20pm Sam S./Yutong
G 3:30pm - 4:20pm Howard/Yongshan
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Full Name: Andrew ID:

Question Points Score

Binary Answers 30

Costs 12

Short Answers 26

Slightly Longer Answers 20

Neighborhoods 20

Median ADT 12

Geometric Coverage 12

Swap with Compare-and-Swap 20

Total: 152
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Question 1: Binary Answers (30 points)

(a) (2 points) TRUE or FALSE: The expressions (Seq.reduce f I A) and (Seq.iterate
f I A) always return the same result as long as f is commutative.

(b) (2 points) TRUE or FALSE: The expressions (Seq.reduce f I A) and (Seq.reduce f

I (Seq.reverse A)) always return the same result if f is associative and commutative.

(c) (2 points) TRUE or FALSE: If a randomized algorithm has expected O(n) work, then
there exists some constant c such that the work performed is guaranteed to be at most cn.

(d) (2 points) TRUE or FALSE: Solving recurrences with induction can be used to show
both upper and lower bounds?

(e) (2 points) TRUE or FALSE: Let p be an odd prime. In open address hashing with a
table of size p and given a hash function h(k), quadratic probing uses h(k, i) = (h(k) + i2)
mod p as the ith probe position for key k. If there is an empty spot in the table quadratic
hashing will always find it.

(f) (2 points) TRUE or FALSE: Bottom-Up Dynamic Programming can be parallel, whereas
the Top-Down version as described in class (ie, purely functional) is always sequential.

(g) (2 points) TRUE or FALSE: The height of any treap is O(log n).

(h) (2 points) TRUE or FALSE: It is possible to write insert for treaps that uses the split
operation but not the join operation.

(i) (2 points) TRUE or FALSE: Dijkstra’s algorithm always terminates even if the input
graph contains negative edge weights.

(j) (2 points) TRUE or FALSE: A Θ(n2)-work algorithm always takes longer to run than
a Θ(n log n)-work algorithm.

(k) (2 points) TRUE or FALSE: We can improve the work efficiency of a parallel algorithm
by using granularity control.

(l) (2 points) TRUE or FALSE: We can measure the work efficiency of a parallel algorithm
by measuring the running time (work) of the algorithm on a single core, divided by the
running time (work) of the sequential elision of the algorithm.

(m) (2 points) TRUE or FALSE: Some atomic read-modify-write operations such as compare-
and-swap suffer from the ABA problem.

(n) (2 points) TRUE or FALSE: Race conditions are just when two concurrent threads write
to the same location.

(o) (2 points) TRUE or FALSE: In a greedy scheduler a processor cannot sit idle if there is
work to do.
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Question 2: Costs (12 points)

(a) (6 points) Give tight assymptotic bounds (Θ) for the following recurrence using the tree
method. Show your work.

W (n) = 2W (n/2) + n log n

(b) (6 points) Check the appropriate column for each row in the following table:

root dominated leaf dominated balanced

W (n) = 2W (n/2) + n1.5

W (n) =
√
nW (

√
n) +

√
n

W (n) = 8W (n/2) + n2
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Question 3: Short Answers (26 points)
Answer each of the following questions in the spaces provided.

(a) (3 points) What simple formula defines the parallelism of an algorithm (in terms of work
and span)?

(b) (3 points) Name two algorithms we covered in this course that use the greedy method.

(c) (3 points) Given a sequence of key-value pairs A, what does the following code do?

Table.map Seq.length (Table.collect A)

(d) (5 points) Consider an undirected graph G with unique positive weights. Suppose it has a
minimum spanning tree T . If we square all the edge weights and compute the MST again,
do we still get the same tree structure? Explain briefly.

(e) (3 points) What asymptotically efficient parallel algorithm/technique can one use to count
the number of trees in a forest (tree and forest have their graph-theoretical meaning)?
(Hint: the ancient saying of “can’t see forest from the trees” may or may not be of help.)
Give the work and span for your proposed algorithm.

(f) (3 points) What are the two ordering invariants of a Treap? (Describe them briefly.)

(g) (6 points) Is it the case that in a leftist heap the left subtree of a node is always larger
than the right subtree. If so, argue why (briefly). If not, give an example.
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Question 4: Slightly Longer Answers (20 points)

(a) (6 points) Certain locations on a straight pathway recently built for robotics research have
to be covered with a special surface, so CMU hires a contractor who can build arbitrary
length segments to cover these locations (a location is covered if there is a segment covering
it). The segment between a and b (inclusive) costs (b− a)2 + k, where k is a non-negative
constant. Let k ≥ 0 and X = 〈x0, . . . , xn−1〉, xi ∈ R+, be a sequence of locations that have
to be covered. Give an O(n2)-work dynamic programming solution to find the cheapest
cost of covering these points (all given locations must be covered). Be sure to specify a
recursive solution, identify sharing, and describe the work and span in terms of the DAG.

(b) (7 points) Here is a slightly modified version of the algorithm given in class for finding
the optimal binary search tree (OBST):

function OBST (A) =
let

function OBST’ (S, d) =
if |S| = 0 then 0
else mini∈〈 1,...,|S| 〉>(OBST’(S1,i−1, d + 1) + d× p(Si) + OBST’(Si+1,|S|, d + 1))

in
OBST’(A, 1)

end

Recall that Si,j is the subsequence 〈Si, Si+1, . . . , Sj〉 of S. For |A| = n, place an asymptotic
upper bound on the number of distinct arguments OBST′ will have (a tighter bound will
get more credit).

(c) (7 points) Given n line segments in 2 dimensions, the 3-intersection problem is to deter-
mine if any three of them intersect at the same point. Explain how to do this in O(n2)
work and O(log2 n) span. You can assume the lines are given with integer endpoints (i.e.
you can do exact arithmetic and not worry about roundoff errors).
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Question 5: Neighborhoods (20 points)
Suppose that you are given a weighted, directed graph G representing the road network in a
city. Your mission is to develop a “walking paths” algorithm that may not always return the
shortest paths but will return a path between two points of interest that is enjoyable to walk.
To this end, suppose that the graph G is labeled with its neighborhood. For example, a vertex
representing the Gates building may have an “oakland” label.

In G, a walking path from a source in a neighborhood to another vertex in the same neighbor-
hood is defined as the shortest path that never leaves that neighborhood—all the vertices on
the shortest path are in the neighborhood.

Throughout assume that G contain no negative edges. Use n for the number of vertices in the
graph and m for the number of edges.

(a) (5 points) Describe how to modify Dijkstra’s algorithm so that it calculates in H walking
paths from a source to all the other vertices in the same neighborhood.

(b) (5 points) What is the work and span of your algorithm? Give a tight bound. Define any
extra variables that you may use, if any.

Work =

Span =
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(c) For this part, assume that you live in a city that is planned to be walkable. Specifically,
the city consists of a single center vertex c with k outgoing edges/streets each of which
connects with one of k neighborhoods with n1 . . . nk vertices and m1 . . .mk edges respec-
tively. Furthermore, you can walk on a street in either direction, i.e., each edge has a
corresponding reverse edge with the same weight. The graph below illustrates an example
with k = 5, where G1 . . . Gk represents the neighborhoods.

G5

G1

c

G2

G4

G31
3

52

4

Give a parallel algorithm for the SSSP (single-source shortest paths) problem that given a
source s finds the shortest paths to all vertices in the graph. Your algorithm should take
advantage of the special topology of your city.

You are not allowed to use Bellman-Ford because it will likely perform too much work and
it still has a relatively large span.

i. (5 points) Describe your algorithm. Let Gs denote the neighborhood for the source
s.

ii. (5 points) What is the work and span of your algorithm

Work =

Span =
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Question 6: Median ADT (12 points)
The median of a set C, denoted by median(C), is the value of the dn/2e-th smallest element
(counting from 1). For example,

median({1, 3, 5, 7}) = 3
median({4, 2, 9}) = 4

In this problem, you will implement an abstract data type medianT that maintains a collection
of integers (possibly with duplicates) and supports the following operations:

insert(C, v) : medianT× int→ medianT add the integer v to C.
median(C) : medianT→ int return the median value of C.
fromSeq(S) : int Seq.t→ medianT create a medianT from S.

Throughout this problem, let n denote the size of the collection at the time, i.e., n = |C|.
(a) (5 points) Describe how you would implement the medianT ADT using (balanced) binary

search trees so that insert and median take O(log n) work and span.

(b) (7 points) Using some other data structure, describe how to improve the work to O(log n),
O(1) and O(|S|) for the three operations respectively. The fromSeq S function needs to
run in O(log2 |S|) expected span and the work can be expected case. (Hint: think about
maintaining the median, the elements less than the median, and the elements greater than
the median separately.)
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Question 7: Geometric Coverage (12 points)
For points p1, p2 ∈ R2, we say that p1 = (x1, y1) covers p2 = (x2, y2) if x1 ≥ x2 and y1 ≥ y2.
Given a set S ⊆ R2, the geometric cover number of a point q ∈ R2 is the number of points in
S that q covers. Notice that by definition, every point covers itself, so its cover number must
be at least 1.

In this problem, we’ll compute the geometric cover number for every point in a given sequence.
More precisely:

Input: a sequence S = 〈s1, . . . , sn〉, where each si ∈ R2 is a 2-d point.

Output: a sequence of pairs each consististing of a point and its cover number. Each
point must appear exactly once, but the points can be in any order.

Assume that we use the ArraySequence implementation for sequences.

(a) (4 points) Develop a brute-force solution gcnBasic (in pseudocode or Standard ML). De-
spite being a brute-force solution, your solution should not do more work than O(n2).

(b) (4 points) In words, outline an algorithm gcnImproved that has O(n log n) work. You
may assume an implementation of OrderedTable in which split, join, and insert have
O(log n) cost (i.e., work and span), and size and empty have O(1) cost.

15–210 Practice Final 10 of 18 May 2016



(c) (4 points) Show that the work bound cannot be further improved by giving a lower bound
for the problem.
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Question 8: Swap with Compare-and-Swap (20 points)

(a) (10 points) Write a function swap that takes two memory locations la and lb and atomi-
cally swaps their values using compare-and-swap. Recall that compare-and-swap takes a
memory location `, an old value v, and a new value w and atomically replaces the contents
of ` with w if the contents of ` is equal to v.

long lock = 0;

function swap-with-cas (la: long, lb: long) =
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(b) (10 points) Does your algorithm suffer from the ABA problem? If so, explain how it does,
and whether the problem affects the correctness of your algorithm. If so, then can you
describe briefly a way to fix the problem (no pseudo-code needed)?
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Appendix: Library Functions

signature SEQUENCE =

sig

type ’a t

type ’a seq = ’a t

type ’a ord = ’a * ’a -> order

datatype ’a listview = NIL | CONS of ’a * ’a seq

datatype ’a treeview = EMPTY | ONE of ’a | PAIR of ’a seq * ’a seq

exception Range

exception Size

val nth : ’a seq -> int -> ’a

val length : ’a seq -> int

val toList : ’a seq -> ’a list

val toString : (’a -> string) -> ’a seq -> string

val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

val empty : unit -> ’a seq

val singleton : ’a -> ’a seq

val tabulate : (int -> ’a) -> int -> ’a seq

val fromList : ’a list -> ’a seq

val rev : ’a seq -> ’a seq

val append : ’a seq * ’a seq -> ’a seq

val flatten : ’a seq seq -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq

val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

val enum : ’a seq -> (int * ’a) seq

val filterIdx : (int * ’a -> bool) -> ’a seq -> ’a seq

val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

val update : ’a seq * (int * ’a) -> ’a seq

val inject : ’a seq * (int * ’a) seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq

val take : ’a seq -> int -> ’a seq

val drop : ’a seq -> int -> ’a seq

val splitHead : ’a seq -> ’a listview

val splitMid : ’a seq -> ’a treeview

val iterate : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq * ’b

val iteratePrefixesIncl : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq

val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

val scan : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq * ’a

val scanIncl : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq

val sort : ’a ord -> ’a seq -> ’a seq

val merge : ’a ord -> ’a seq * ’a seq -> ’a seq

val collect : ’a ord -> (’a * ’b) seq -> (’a * ’b seq) seq
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val collate : ’a ord -> ’a seq ord

val argmax : ’a ord -> ’a seq -> int

val $ : ’a -> ’a seq

val % : ’a list -> ’a seq

end

ArraySequence Work Span

empty ()

O(1) O(1)
singleton a

length s

nth s i

subseq s (i, len)

tabulate f n
if f(i) has Wi work and Si span

O

(
n−1∑
i=0

Wi

)
O

(
n−1
max
i=0

Si

)
map f s
if f(s[i]) has Wi work and Si span, and |s| = n

zipWith f (s, t)
if f(s[i], t[i]) has Wi work and Si span, and min(|s|, |t|) = n

reduce f b s
if f does constant work and |s| = n

O(n) O(lg n)scan f b s
if f does constant work and |s| = n

filter p s
if p does constant work and |s| = n

flatten s O

(
n−1∑
i=0

(
1 + |s[i]|

))
O(lg |s|)

sort cmp s
if cmp does constant work and |s| = n

O(n lg n) O(lg2 n)

merge cmp (s, t)
if cmp does constant work, |s| = n, and |t| = m

O(m + n) O(lg(m + n))

append (s,t)
if |s| = n, and |t| = m

O(m + n) O(1)
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signature TABLE =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type ’a t

type ’a table = ’a t

structure Set : SET where Key = Key and Seq = Seq

val size : ’a table -> int

val domain : ’a table -> Set.t

val range : ’a table -> ’a Seq.t

val toString : (’a -> string) -> ’a table -> string

val toSeq : ’a table -> (Key.t * ’a) Seq.t

val find : ’a table -> Key.t -> ’a option

val insert : ’a table * (Key.t * ’a) -> ’a table

val insertWith : (’a * ’a -> ’a) -> ’a table * (Key.t * ’a) -> ’a table

val delete : ’a table * Key.t -> ’a table

val empty : unit -> ’a table

val singleton : Key.t * ’a -> ’a table

val tabulate : (Key.t -> ’a) -> Set.t -> ’a table

val collect : (Key.t * ’a) Seq.t -> ’a Seq.t table

val fromSeq : (Key.t * ’a) Seq.t -> ’a table

val map : (’a -> ’b) -> ’a table -> ’b table

val mapKey : (Key.t * ’a -> ’b) -> ’a table -> ’b table

val filter : (’a -> bool) -> ’a table -> ’a table

val filterKey : (Key.t * ’a -> bool) -> ’a table -> ’a table

val reduce : (’a * ’a -> ’a) -> ’a -> ’a table -> ’a

val iterate : (’b * ’a -> ’b) -> ’b -> ’a table -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a table -> (’b table * ’b)

val union : (’a * ’a -> ’a) -> (’a table * ’a table) -> ’a table

val intersection : (’a * ’b -> ’c) -> (’a table * ’b table) -> ’c table

val difference : ’a table * ’b table -> ’a table

val restrict : ’a table * Set.t -> ’a table

val subtract : ’a table * Set.t -> ’a table

val $ : (Key.t * ’a) -> ’a table

end
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signature SET =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type t

type set = t

val size : set -> int

val toString : set -> string

val toSeq : set -> Key.t Seq.t

val empty : unit -> set

val singleton : Key.t -> set

val fromSeq : Key.t Seq.t -> set

val find : set -> Key.t -> bool

val insert : set * Key.t -> set

val delete : set * Key.t -> set

val filter : (Key.t -> bool) -> set -> set

val reduceKey : (Key.t * Key.t -> Key.t) -> Key.t -> set -> Key.t

val iterateKey : (’a * Key.t -> ’a) -> ’a -> set -> ’a

val union : set * set -> set

val intersection : set * set -> set

val difference : set * set -> set

val $ : Key.t -> set

end
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MkTreapTable Work Span

size T O(1) O(1)

filter f T ∑
(k 7→v)∈T

W (f(v)) lg |T |+ max
(k 7→v)∈T

S(f(v))
map f T

tabulate f X
∑
k∈X

W (f(k)) max
k∈X

S(f(k))

reduce f b T
if f does constant work

O(|T |) O(lg |T |)

insertWith f (T,(k,v))
if f does constant work O(lg |T |) O(lg |T |)

find T k
delete (T,k)

domain T
O(|T |) O(lg |T |)range T

toSeq T

collect S
O(|S| lg |S|) O(lg2 |S|)

fromSeq S

For each argument pair (A,B) below, let n = max(|A|, |B|) and m = min(|A|, |B|).

MkTreapTable Work Span

union f (X,Y )

O
(
m lg(n+m

m )
)

O
(
lg(n + m)

)intersection f (X,Y )

difference (X,Y )

restrict (T,X)

subtract (T,X)
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