\qquad
\qquad

15-210: Parallel and Sequential Data Structures and Algorithms

Practice Exam I

February 2016

- There are 13 pages in this examination, comprising 7 questions worth a total of 110 points. The last few pages are an appendix detailing some of the 15-210 library functions and their cost bounds.
- You have 80 minutes to complete this examination.
- Please answer all questions in the space provided with the question. Clearly indicate your answers.
- You may refer to your one double-sided $8 \frac{1}{2} \times 11$ in sheet of paper with notes, but to no other person or source, during the examination.

Circle the section YOU ATTEND

Sections		
A	9:30am - 10:20am	Edward/Angie
B	10:30am-11:20am	Jake/Narain
C	12:30pm - 1:20pm	Sonya/Anisha
D	12:30pm - 1:20pm	Nick/Yongshan
E	1:30pm - 2:20pm	William/Bryan
F	1:30pm - $2: 20 \mathrm{pm}$	Sam S./Yutong
G	3:30pm - 4:20pm	Howard/Yongshan

\qquad

Question	Points	Score
Recurrences	16	
Short Answers	21	
Missing Element	12	
Interval Containment	13	
Quicksort	17	
Parentheses Revisited	16	
Treaps	15	
Total:	110	

Question 1: Recurrences (16 points)
Recall that $f(n)$ is $\Theta(g(n))$ if $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$. Give a closed-form solution in terms of Θ for the following recurrences. Also, state whether the recurrence is dominated at the root, the leaves, or equally at all levels of the recurrence tree.
You do not have to show your work, but it might help you get partial credit.
(a) (4 points) $f(n)=5 f(n / 5)+\Theta(n)$
(b) (4 points) $f(n)=3 f(n / 2)+\Theta\left(n^{2}\right)$
(c) (4 points) $f(n)=f(n / 2)+\Theta(\lg n)$
(d) (4 points) $f(n)=5 f(n / 8)+\Theta\left(n^{2 / 3}\right)$

Question 2: Short Answers (21 points)

(a) (5 points) Assume you are given a function f : int Seq.t \times int Seq.t \rightarrow int Seq.t where $f(A, B)$ requires $O\left((|A|+|B|)^{2}\right)$ work and $O(\log (|A|+|B|))$ span, and returns a sequence of length $|A|+|B|$. Give the work and span of the following function as tight Big- O bounds in terms of $|S|$.

```
fun foo S =
    Seq.reduce f (Seq.empty ()) (Seq.map Seq.singleton S)
```

(b) (7 points) Suppose we implement a function fastJoin which has the same specification as the BST function join, except that it requires only $O\left(\log \left(\min \left(\left|T_{1}\right|,\left|T_{2}\right|\right)\right)\right)$ work and span for inputs T_{1} and T_{2}. Give the work and span of the following function as tight Big-O bounds in terms of $|S|$. Assume S is presorted by key.

```
fun bar S =
    Seq.scan Tree.fastJoin (Tree.empty ()) (Seq.map Tree.singleton S)
```

(c) (5 points) Implement reduce using contraction. You can assume the input length is a power of 2 .
(d) Guessing Games I am thinking of a random non-negative integer, X. Of course, I can't mean uniformly random, as that would mean that at least half the time I'm thinking of an infinite integer! As it turns out, the expected value of positive integers I think of is 1000.
i. (4 points) For some reason, I like to choose 15210 a lot. Give an upper bound on the probability with which I can choose $X=15210$ (while still obeying the condition $\mathbf{E}[X]=1000$).

Question 3: Missing Element (12 points)

For 15210, there is a roster of n unique Andrew ID's, each a string of at most 9 characters long (so String. compare costs $O(1)$).

In this problem, the roster is given as a sorted string sequence R of length n. Additionally, you are given another sequence S of $n-1$ unique ID's from R. The sequence S is not necessarily sorted. Your task is to design and code a divide-and-conquer algorithm to find the missing ID.
(a) (7 points) Write an algorithm in SML that has $O(n)$ work and $O\left(\log ^{2} n\right)$ span.

```
(* Invariant: |R| = |S|+1 *)
fun missingElt (R: string Seq.t, S: string Seq.t) : string =
let
    fun lessThan a b = (String.compare(b, a)=LESS) % is b<a?
in
    case (length R)
        of 0 }=>\mathrm{ raise Fail "should not get here"
            | 1 # 
            | n = % recursive step
            let val p =
                    val Sleft = Seq.filter (lessThan p) S
                    val Sright = Seq.filter (not o (lessThan p)) S
                    val Rleft =
```

\qquad

```
                            val Rright =
```

\qquad

```
in
``` \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
 end
end
(b) (5 points) Give a brief justification of why your algorithm meets the cost bounds.

Question 4: Interval Containment (13 points)
An interval is a pair of integers \((a, b)\). An interval \((a, b)\) is contained in another interval \((\alpha, \beta)\) if \(\alpha<a\) and \(b<\beta\). In this problem, you will design an algorithm
count: (int * int) seq \(\rightarrow\) int
which takes a sequence of intervals (i.e., ordered pairs) \(\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n-1}, b_{n-1}\right)\) and computes the number of intervals that are contained in some other interval. If an interval is contained in multiple intervals, it is counted only once.
For example, count \(\langle(0,6),(1,2),(3,5)\rangle=2\) and count \(\langle(1,5),(2,7),(3,4)\rangle=1\). Notice that the interval \((3,4)\) is contained in both \((1,5)\) and \((2,7)\), but the count is 1 .
You can assume that the input to your algorithm is sorted in increasing order of the first coordinate and that all the coordinates (the \(a_{i}\) 's and \(b_{i}\) 's) are distinct.
(a) (5 points) Give a brute force solution to this problem (code or prose).
(b) (8 points) Design an algorithm that has \(O(n)\) work and \(O(\log n)\) span. Carefully explain your algorithm; you don't have to write code. Hint: The algorithm is short.

Question 5: Quicksort (17 points)
Assume throughout that all keys are distinct.
(a) (3 points) TRUE or FALSE. In randomized quicksort, each key is involved in the same number of comparisons.
(b) (7 points) What is the probability that in randomized quicksort, a random pivot selection on an input of \(n\) keys leads to recursive calls, both of which are no smaller than \(\frac{n}{16}\) ? Show your work.
(c) (7 points) Consider running randomized quicksort on a permutation of \(1, \ldots, n\). What is the probability that a quicksort call tree has height exactly \(n\) ? Note: the height of a tree is the number of nodes on its longest path.

Question 6: Parentheses Revisited (16 points)
A parenthesis expression is called immediately paired if it consists of a sequence of open-close parentheses - that is, of the form " ()()()()\(\ldots()\) ".
(a) (8 points) Longest immediately paired subsequence (LIPS) problem. Given a (not necessarily matched) parenthesis sequence \(s\), the longest immediately paired subsequence problem requires finding a (possibly non-contiguous) longest subsequence of \(s\) that is immediately paired. For example, the LIPS of " \((((()((())()))))()(((())(())\) " is " ()()()()()() " as highlighted in the original sequence.
Write a function that computes the length of a LIPS for a given sequence. Your function should have \(O(n)\) work and \(O(\lg n)\) span.
(Hint: Try to find a property that simplifies computing LIPS. This problem might be difficult to solve otherwise.)
```

datatype paren = L | R
fun findLIPS (s: paren Seq.t) : int =

```
(b) (8 points) Prove succintly that your algorithm correctly computes LIPS.

Question 7: Treaps (15 points)
(a) (5 points) Suppose we have the keys \(1,2,3,4,5,6\) with priorities \(p\) shown below:
\begin{tabular}{l|ccccccc}
key & A & B & C & D & E & F & G \\
\hline p (key) & 2 & 5 & 1 & 7 & 4 & 6 & 3
\end{tabular}

Draw the max-treap (requires that priority at a node is greater than the priority of its two children) associated with inserting the keys in the order \(A, B, G, F, C, E, D\).
(b) (3 points) What is the probability that the root of a treap has a left or right subtree of size \((n-3)\), where \(n\) is the size of the tree and \(n>5\).
(c) (7 points) In our analysis of the expected depth of a key in a treap, we made use of the following indicator random variable
\[
A_{i}^{j}= \begin{cases}1 & \text { if the } j^{\text {th }} \text { largest key is an ancestor of the } i^{\text {th }} \text { largest } \\ 0 & \text { otherwise }\end{cases}
\]
i. For a treap of size \(n\), let \(S_{i}\) be the size of a subtree rooted at key \(i\). Write an expression for \(S_{i}\) in terms of these indicator random variables.
ii. Derive a closed-form expression for \(\mathbf{E}\left[S_{i}\right]\) in terms of \(\ln n, H_{n}, n\) ! and the like, and then in big-O notation.
iii. TRUE or FALSE: The size of the subtree rooted at key \(i\) is within a constant factor of \(\mathbf{E}\left[S_{i}\right]\) with high probability.

\section*{Appendix: Library Functions}
```

signature SEQUENCE =
sig
type 'a t
type 'a seq = 'a t
type 'a ord = 'a * 'a -> order
datatype 'a listview = NIL | CONS of 'a * 'a seq
datatype 'a treeview = EMPTY | ONE of 'a | PAIR of 'a seq * 'a seq
exception Range
exception Size
val nth : 'a seq -> int -> 'a
val length : 'a seq -> int
val toList : 'a seq -> 'a list
val toString : ('a -> string) -> 'a seq -> string
val equal : ('a * 'a -> bool) -> 'a seq * 'a seq -> bool
val empty : unit -> 'a seq
val singleton : 'a -> 'a seq
val tabulate : (int -> 'a) -> int -> 'a seq
val fromList : 'a list -> 'a seq
val rev : 'a seq -> 'a seq
val append : 'a seq * 'a seq -> 'a seq
val flatten : 'a seq seq -> 'a seq
val filter : ('a -> bool) -> 'a seq -> 'a seq
val map : ('a -> 'b) -> 'a seq -> 'b seq
val zip : 'a seq * 'b seq -> ('a * 'b) seq
val zipWith : ('a * 'b -> 'c) -> 'a seq * 'b seq -> 'c seq
val enum : 'a seq -> (int * 'a) seq
val filterIdx : (int * 'a -> bool) -> 'a seq -> 'a seq
val mapIdx : (int * 'a -> 'b) -> 'a seq -> 'b seq
val update : 'a seq * (int * 'a) -> 'a seq
val inject : 'a seq * (int * 'a) seq -> 'a seq
val subseq : 'a seq -> int * int -> 'a seq
val take : 'a seq -> int -> 'a seq
val drop : 'a seq -> int -> 'a seq
val splitHead : 'a seq -> 'a listview
val splitMid : 'a seq -> 'a treeview

```
```

    val iterate : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
    val iteratePrefixes : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq * 'b
    val iteratePrefixesIncl : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq
    val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
    val scan : ('a * 'a >> 'a) -> 'a -> 'a seq -> 'a seq * 'a
    val scanIncl : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq
    val sort : 'a ord -> 'a seq -> 'a seq
    val merge : 'a ord -> 'a seq * 'a seq -> 'a seq
    val collect : 'a ord -> ('a * 'b) seq -> ('a * 'b seq) seq
    val collate : 'a ord -> 'a seq ord
    val argmax : 'a ord -> 'a seq -> int
    val $ : 'a -> 'a seq
    val % : 'a list -> 'a seq
    end

```
\begin{tabular}{|c|c|c|}
\hline ArraySequence & Work & Span \\
\hline ```
empty ()
singleton a
length s
nth s i
subseq s (i, len)
``` & \(O(1)\) & \(O(1)\) \\
\hline ```
tabulate f n
    if f(i) has Wi work and Si span
map f s
    if f(s[i]) has Wi work and Si span, and |s| =n
zipWith f (s, t)
    if f(s[i],t[i]) has Wi work and Si span, and min}(|s|,|t|)=
``` & \[
O\left(\sum_{i=0}^{n-1} W_{i}\right)
\] & \[
O\left(\max _{i=0}^{n-1} S_{i}\right)
\] \\
\hline ```
reduce f b s
 if f does constant work and }|s|=
scan f b s
 if f does constant work and }|s|=
filter p s
 if p does constant work and |s|=n
``` & \[
O(n)
\] & \(O(\lg n)\) \\
\hline flatten s & \(O\left(\sum_{i=0}^{n-1}(1+|s[i]|)\right)\) & \(O(\lg |s|)\) \\
\hline \begin{tabular}{l}
sort cmp s \\
if cmp does constant work and \(|s|=n\)
\end{tabular} & \(O(n \lg n)\) & \(O\left(\lg ^{2} n\right)\) \\
\hline \begin{tabular}{l}
merge cmp ( \(\mathrm{s}, \mathrm{t}\) ) \\
if cmp does constant work, \(|s|=n\), and \(|t|=m\)
\end{tabular} & \(O(m+n)\) & \(O(\lg (m+n))\) \\
\hline \[
\begin{aligned}
& \text { append (s,t) } \\
& \quad \text { if }|s|=n \text {, and }|t|=m
\end{aligned}
\] & \(O(m+n)\) & \(O(1)\) \\
\hline
\end{tabular}```

