
Full Name:

Andrew ID: Section:

15–210: Parallel and Sequential Data Structures and Algorithms

Practice Exam I (Solutions)

February 2016

• There are 13 pages in this examination, comprising 7 questions worth a total of 110 points.
The last few pages are an appendix detailing some of the 15-210 library functions and their
cost bounds.

• You have 80 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your
answers.

• You may refer to your one double-sided 81
2 × 11in sheet of paper with notes, but to no other

person or source, during the examination.

Circle the section YOU ATTEND

Sections

A 9:30am - 10:20am Edward/Angie
B 10:30am - 11:20am Jake/Narain
C 12:30pm - 1:20pm Sonya/Anisha
D 12:30pm - 1:20pm Nick/Yongshan
E 1:30pm - 2:20pm William/Bryan
F 1:30pm - 2:20pm Sam S./Yutong
G 3:30pm - 4:20pm Howard/Yongshan

15–210 Practice Exam I 1 of 13 February 2016

Full Name: Andrew ID:

Question Points Score

Recurrences 16

Short Answers 21

Missing Element 12

Interval Containment 13

Quicksort 17

Parentheses Revisited 16

Treaps 15

Total: 110

15–210 Practice Exam I 2 of 13 February 2016

Question 1: Recurrences (16 points)
Recall that f(n) is Θ(g(n)) if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)). Give a closed-form solution
in terms of Θ for the following recurrences. Also, state whether the recurrence is dominated at
the root, the leaves, or equally at all levels of the recurrence tree.

You do not have to show your work, but it might help you get partial credit.

(a) (4 points) f(n) = 5f(n/5) + Θ(n)

Solution: Θ(n lg n), balanced.

(b) (4 points) f(n) = 3f(n/2) + Θ(n2)

Solution: Θ(n2), root-dominated.

(c) (4 points) f(n) = f(n/2) + Θ(lg n)

Solution: Θ(lg2 n), approximately balanced.

(d) (4 points) f(n) = 5f(n/8) + Θ(n2/3)

Solution: Θ(nlg8 5) (roughly Θ(n0.77)) leaf-dominated.

15–210 Practice Exam I 3 of 13 February 2016

Question 2: Short Answers (21 points)

(a) (5 points) Assume you are given a function f : int Seq.t × int Seq.t → int Seq.t

where f(A,B) requires O
(
(|A|+ |B|)2

)
work and O(log(|A| + |B|)) span, and returns a

sequence of length |A| + |B|. Give the work and span of the following function as tight
Big-O bounds in terms of |S|.

fun foo S =

Seq.reduce f (Seq.empty ()) (Seq.map Seq.singleton S)

Solution: Work: O(|S|2). Span: O(log2 |S|)

(b) (7 points) Suppose we implement a function fastJoin which has the same specification
as the BST function join, except that it requires only O(log(min(|T1|, |T2|))) work and
span for inputs T1 and T2. Give the work and span of the following function as tight Big-O
bounds in terms of |S|. Assume S is presorted by key.

fun bar S =

Seq.scan Tree.fastJoin (Tree.empty ()) (Seq.map Tree.singleton S)

Solution: Work: O(|S|). Span: O(log2 |S|).

(c) (5 points) Implement reduce using contraction. You can assume the input length is a
power of 2.

Solution:

fun reduce f b s =

case length s

of 0 => b

| 1 => f(b, nth s 0)

| n =>

let

val x = tabulate

(fn i => case i = (n div 2) of

true => (nth s (2*i))

| _ => f(nth s (2*i), nth s (2*i + 1)))

(((n-1) div 2)+1)

in reduce f b x

end

15–210 Practice Exam I 4 of 13 February 2016

(d) Guessing Games I am thinking of a random non-negative integer, X. Of course, I can’t
mean uniformly random, as that would mean that at least half the time I’m thinking of
an infinite integer! As it turns out, the expected value of positive integers I think of is
1000.

i. (4 points) For some reason, I like to choose 15210 a lot. Give an upper bound on
the probability with which I can choose X = 15210 (while still obeying the condition
E[X] = 1000).

Solution: From Markov’s inequality,

Pr [X ≥ 15210] ≤ E[X]

15210

So, Pr [X = 15210] ≤ 1000/15210. Equivalently, you could assume that I only
think of the numbers 0 and 15210, and solve from there.

15–210 Practice Exam I 5 of 13 February 2016

Question 3: Missing Element (12 points)
For 15210, there is a roster of n unique Andrew ID’s, each a string of at most 9 characters
long (so String.compare costs O(1)).

In this problem, the roster is given as a sorted string sequence R of length n. Additionally,
you are given another sequence S of n − 1 unique ID’s from R. The sequence S is not
necessarily sorted. Your task is to design and code a divide-and-conquer algorithm to find
the missing ID.

(a) (7 points) Write an algorithm in SML that has O(n) work and O(log2 n) span.

open ArraySequence

fun missing_elt(R: string seq, S: string seq) : string =

let fun lessThan a b = (String.compare(b, a)=LESS) (* is b<a? *)

in

case (length R)

of 0 => raise Fail "should not get here"

| 1 => nth R 0

| n =>

let val p = nth R (n div 2)

val Sleft = filter (lessThan p) S

val Sright = filter (not o (lessThan p)) S

val Rleft = take (R, n div 2)

val Rright = drop (R, n div 2)

in if (length Sleft < length Rleft) then

missing_elt (Rleft, Sleft)

else

missing_elt (Rright, Sright)

end

end

(b) (5 points) Give a brief justification of why your algorithm meets the cost bounds.

Solution: We maintain the variant that |R| = |S| + 1. The body of the function
contains only filter, take, and drop, which have Θ(|R|) work and Θ(log |R|) span.
Furthermore, the algorithm makes only one recursive call on the problem of size |R|/2,
so we have W (n) = W (n/2) + Θ(n) and S(n) = S(n/2) + Θ(log n). These recurrences
solve to W (n) = Θ(n) and S(n) = Θ(log2 n).

15–210 Practice Exam I 6 of 13 February 2016

Question 4: Interval Containment (13 points)
An interval is a pair of integers (a, b). An interval (a, b) is contained in another interval (α, β)
if α < a and b < β. In this problem, you will design an algorithm

count: (int * int) seq → int

which takes a sequence of intervals (i.e., ordered pairs) (a0, b0), (a1, b1), . . . , (an−1, bn−1) and
computes the number of intervals that are contained in some other interval. If an interval is
contained in multiple intervals, it is counted only once.

For example, count 〈(0, 6), (1, 2), (3, 5)〉 = 2 and count 〈(1, 5), (2, 7), (3, 4)〉 = 1. Notice that
the interval (3, 4) is contained in both (1, 5) and (2, 7), but the count is 1.

You can assume that the input to your algorithm is sorted in increasing order of the first
coordinate and that all the coordinates (the ai’s and bi’s) are distinct.

(a) (5 points) Give a brute force solution to this problem (code or prose).

Solution:

open ArraySequence

fun count s =

let fun or (p,q) = p orelse q

fun inOther (a,b) =

reduce or false (map (fn (x,y) => (x < a) andalso (b < y)) s)

in reduce (op+) 0 (map (fn iv => if inOther iv then 1 else 0) s)

end

(b) (8 points) Design an algorithm that has O(n) work and O(log n) span. Carefully explain
your algorithm; you don’t have to write code. Hint: The algorithm is short.

Solution:

open ArraySequence

fun count (s : (int*int) seq) =

let val ends = map (fn (_,b) => b) s

val (maxCovered, _) = scan Int.max (Option.valOf Int.minInt) ends

fun inOther ((a,b), covered) =

if b < covered then 1 else 0

in reduce (op+) 0 (zipWith inOther (s, maxCovered))

end

15–210 Practice Exam I 7 of 13 February 2016

Question 5: Quicksort (17 points)
Assume throughout that all keys are distinct.

(a) (3 points) TRUE or FALSE. In randomized quicksort, each key is involved in the same
number of comparisons.

Solution: FALSE

(b) (7 points) What is the probability that in randomized quicksort, a random pivot selection
on an input of n keys leads to recursive calls, both of which are no smaller than n

16? Show
your work.

Solution: 7
8

(c) (7 points) Consider running randomized quicksort on a permutation of 1, . . . , n. What is
the probability that a quicksort call tree has height exactly n? Note: the height of a tree
is the number of nodes on its longest path.

Solution: This happens only when we pick the maximum or the minimum element
in the input repeatedly. The probability of that is:

2

n
× 2

n− 1
× · · · × 2

2
=

2n−1

n!

15–210 Practice Exam I 8 of 13 February 2016

Question 6: Parentheses Revisited (16 points)
A parenthesis expression is called immediately paired if it consists of a sequence of open-close
parentheses — that is, of the form ”()()()() . . . ()”.

(a) (8 points) Longest immediately paired subsequence (LIPS) problem. Given a
(not necessarily matched) parenthesis sequence s, the longest immediately paired sub-
sequence problem requires finding a (possibly non-contiguous) longest subsequence of
s that is immediately paired. For example, the LIPS of “(((((((()()())))()(((()(())” is
“()()()()()()” as highlighted in the original sequence.

Write a function that computes the length of a LIPS for a given sequence. Your function
should have O(n) work and O(lg n) span.

(Hint: Try to find a property that simplifies computing LIPS. This problem might be
difficult to solve otherwise.)

datatype paren = L | R

fun findLIPS (s: paren Seq.t) : int =

Solution: The algorithm simply extracts immediately paired parentheses and counts
them. We prove below why this is sufficient.

fun findLIPS (s: paren Seq.t) =

let

fun isIP i =

case (Seq.nth s i, Seq.nth s (i+1))

of (L, R) => 2

| _ => 0

in

Seq.reduce op+ 0 (Seq.tabulate isIP (Seq.length s - 1))

end

(b) (8 points) Prove succintly that your algorithm correctly computes LIPS.

Solution: Consider any parenthesis expression and let () be an immediately paired
parenthesis in the result. Let i and j be the positions of the parenthesis in the original
sequence. Note that i < j. Let k be the leftmost RPAREN and note that i < k ≤ j
and the parenthesis at k−1 and k are immediately paired. In other words, there exists
one immediately paired parentheses in the contiguous subsequence defined by i and
j, e.g., “(....()....)”, “(....()”, “()...)”. It thus suffices to count the immediately paired
parenthesis in the input.

15–210 Practice Exam I 9 of 13 February 2016

Question 7: Treaps (15 points)

(a) (5 points) Suppose we have the keys 1, 2, 3, 4, 5, 6 with priorities p shown below:

key A B C D E F G

p(key) 2 5 1 7 4 6 3

Draw the max-treap (requires that priority at a node is greater than the priority of its
two children) associated with inserting the keys in the order A,B,G, F,C,E,D.

Solution: Recall that Treaps are unique with a given set of keys and priorities. The
only possible solution is:

D

/ \

B F

/ \ / \

A C E G

(b) (3 points) What is the probability that the root of a treap has a left or right subtree of
size (n− 3), where n is the size of the tree and n > 5.

Solution: 2
n . The root must either be the 3rd smallest or 3rd largest key and have

the largest priority.

15–210 Practice Exam I 10 of 13 February 2016

(c) (7 points) In our analysis of the expected depth of a key in a treap, we made use of the
following indicator random variable

Aj
i =

{
1 if the jth largest key is an ancestor of the ith largest

0 otherwise

i. For a treap of size n, let Si be the size of a subtree rooted at key i. Write an expression
for Si in terms of these indicator random variables.

Solution: Si =
∑n

j=1A
i
j

ii. Derive a closed-form expression for E [Si] in terms of lnn,Hn, n! and the like, and
then in big-O notation.

Solution:

E [Si] =

n∑
j=1

1/(|j − i|+ 1)

= Hi +Hn−i+1 − 1

= O(log n)

iii. TRUE or FALSE: The size of the subtree rooted at key i is within a constant factor
of E [Si] with high probability.

Solution: FALSE. By metareasoning it cannot be so since many nodes in a tree
will have subtrees that are bigger than O(log n) and as much as O(n).

15–210 Practice Exam I 11 of 13 February 2016

Appendix: Library Functions

signature SEQUENCE =

sig

type ’a t

type ’a seq = ’a t

type ’a ord = ’a * ’a -> order

datatype ’a listview = NIL | CONS of ’a * ’a seq

datatype ’a treeview = EMPTY | ONE of ’a | PAIR of ’a seq * ’a seq

exception Range

exception Size

val nth : ’a seq -> int -> ’a

val length : ’a seq -> int

val toList : ’a seq -> ’a list

val toString : (’a -> string) -> ’a seq -> string

val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

val empty : unit -> ’a seq

val singleton : ’a -> ’a seq

val tabulate : (int -> ’a) -> int -> ’a seq

val fromList : ’a list -> ’a seq

val rev : ’a seq -> ’a seq

val append : ’a seq * ’a seq -> ’a seq

val flatten : ’a seq seq -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq

val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

val enum : ’a seq -> (int * ’a) seq

val filterIdx : (int * ’a -> bool) -> ’a seq -> ’a seq

val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

val update : ’a seq * (int * ’a) -> ’a seq

val inject : ’a seq * (int * ’a) seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq

val take : ’a seq -> int -> ’a seq

val drop : ’a seq -> int -> ’a seq

val splitHead : ’a seq -> ’a listview

val splitMid : ’a seq -> ’a treeview

15–210 Practice Exam I 12 of 13 February 2016

val iterate : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq * ’b

val iteratePrefixesIncl : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq

val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

val scan : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq * ’a

val scanIncl : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq

val sort : ’a ord -> ’a seq -> ’a seq

val merge : ’a ord -> ’a seq * ’a seq -> ’a seq

val collect : ’a ord -> (’a * ’b) seq -> (’a * ’b seq) seq

val collate : ’a ord -> ’a seq ord

val argmax : ’a ord -> ’a seq -> int

val $: ’a -> ’a seq

val % : ’a list -> ’a seq

end

ArraySequence Work Span

empty ()

O(1) O(1)
singleton a

length s

nth s i

subseq s (i, len)

tabulate f n
if f(i) has Wi work and Si span

O

(
n−1∑
i=0

Wi

)
O

(
n−1
max
i=0

Si

)
map f s
if f(s[i]) has Wi work and Si span, and |s| = n

zipWith f (s, t)
if f(s[i], t[i]) has Wi work and Si span, and min(|s|, |t|) = n

reduce f b s
if f does constant work and |s| = n

O(n) O(lg n)scan f b s
if f does constant work and |s| = n

filter p s
if p does constant work and |s| = n

flatten s O

(
n−1∑
i=0

(
1 + |s[i]|

))
O(lg |s|)

sort cmp s
if cmp does constant work and |s| = n

O(n lg n) O(lg2 n)

merge cmp (s, t)
if cmp does constant work, |s| = n, and |t| = m

O(m+ n) O(lg(m+ n))

append (s,t)
if |s| = n, and |t| = m

O(m+ n) O(1)

15–210 Practice Exam I 13 of 13 February 2016

