
Chapter 13

Graph Contraction and Connectivity

So far we have mostly covered techniques for solving problems on graphs that were developed
in the context of sequential algorithms. Some of them are easy to parallelize while others are
not. For example, we saw that BFS has some parallelism since each level can be explored in
parallel, but there was no parallelism in DFS.1 There was also limited parallelism in Dijkstra’s
algorithm, but there was plenty of parallelism in the Bellman-Ford algorithm. In this chapter we
will cover a technique called “graph contraction” that was specifically designed to be used in
parallel algorithms and allows us to get polylogarithmic span for certain graph problems.

Also, so far, we have only described algorithms that do not modify a graph, but rather just
traverse the graph, or update values associated with the vertices. As part of graph contraction, in
this chapter we will also study techniques that restructure graphs.

13.1 Preliminaries

We start by reviewing and defining some graph terminology. In this chapter we will only concern
ourselves with undirected graphs.

Example 13.1. We will use the following undirected graph as an example.

a

b

c
d

e

f

1In reality, there is parallelism in DFS when graphs are dense—in particular, although vertices need to visited
sequentially, with some care, the edges can be processed in parallel.

209

210 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

Recall that in a graph (either directed or undirected) a vertex v is reachable from a vertex u if
there is a path from u to v. Also recall that an undirected graph is connected if all vertices are
reachable from all other vertices. Our example is connected.

Example 13.2. You can disconnect the graph by deleting two edges, for example (d, f)
and (b, e).

a

b

c

d

e

f

When working with graphs, it is often useful to refer to part of a graph, which we will call a
subgraph. A subgraph can be defined as any subsets of edges and vertices as long as the result is
a well defined graph, and in particular:

Definition 13.3 (Subgraph). Let G = (V,E) and H = (V ′, E ′) be two graphs. H is a
subgraph of if V ′ ⊆ V and E ′ ⊆ E.

Note that since H is a graph, it must be the case that both endpoints of all of its edges are incident
on its vertices (i.e. for an undirected graph E ′ ⊆

(
V ′

2

)
). There are many possible subgraphs of a

graph.

Exercise 13.4. How many subgraphs are there of a triangle consisting of three vertices
and three edges connecting them?

One of the most standard subgraphs of an undirected graph are the so called connected
components of a graph.

Definition 13.5 ((Connected) Component). Let G = (V,E) be a graph. A subgraph H
of G is a connected component of G if it is a maximal connected subgraph of G.

In the definition, “maximal” means we cannot add any more vertices or edges from G to H
without disconnecting H . In general when an object is said to be a maximal “X”, it means that
nothing more can be added to the object without violating the property “X”. Our first example
graph has one connected component (hence it is connected), and the second has two. It is often
useful to find the connected components of a graph, which leads to the following problem:

13.2. GRAPH CONTRACTION 211

Problem 13.6 (The Graph Connectivity (GC) Problem). Given an undirected graph
G = (V,E) return all of its connected components (maximal connected subgraphs).

When talking about subgraphs it is often not necessary to mention all the vertices and edges
in the subgraph. For example for the graph connectivity problem it is sufficient to specify the
vertices in each component, and the edges are then implied—they are simply all edges incident
on vertices in each component. This leads to the important notion of induced subgraphs.

Definition 13.7 (Vertex-Induced Subgraph). The subgraph of G = (V,E) induced by
V ′ ⊆ V is the graph H = (V ′, E ′) where E ′ = {{u, v} ∈ E | u ∈ V ′, v ∈ V ′}.

Using induced subgraphs allows us to specify the connected components of a graph by simply
specifying the vertices in each component. The connected components can therefore be defined
as a partitioning of the vertices. A partitioning of a set means a set of subsets where all elements
are in exactly one of the subsets.

Example 13.8. Connected components on the graph in Example 13.2 returns the parti-
tioning {{a, b, c, d} , {e, f}}.

When studying graph connectivity, sometimes we only care if the graph is connected or not,
or perhaps how many components it has.

In graph connectivity there are no edges between the partitions, by definition. More generally
it can be useful to talk about partitions of a graph (a partitioning of its vertices) in which there
can be edges between partitions. In this case some edges are internal edges within the induced
subgraphs and some are cross edges between them.

Example 13.9. In Example 13.1 the partitioning of the vertices {{a, b, c} , {d} , {e, f}}
defines three induced subgraphs. The edges {a, b}, {a, c}, and {e, f} are internal edges,
and the edges {c, d}, {b, d}, {b, e} and {d, f} are cross edges.

13.2 Graph Contraction

We now return to the topic of the chapter, which is graph contraction. Although graph contraction
can be used to solve a variety of problems, we will first look at how it can be used to solve the
graph connectivity problem. The graph connectivity problem can be solved using a technique
we have already covered, graph search. In particular, we can start at any vertex and search all
vertices reachable from it to create the first component, then move onto the next vertex and if it

212 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

Algorithmic Approach 13.10 (Graph Contraction).

Base case : For a small enough graph (e.g. no edges remaining), calculate the desired
result directly.

Inductive case :

• Contract the graph into a smaller graph, ideally a constant fraction smaller.

• Recurse on the smaller graph.

• Use the result from the recursion along with the initial graph to calculate the
desired result.

has not already been searched, search from it to create the second component. We repeat until all
vertices have been checked. Either BFS or DFS can be used for the individual searches.

Using BFS or DFS lead to perfectly sensible sequential algorithms for graph connectivity,
but they are not good parallel algorithms. Recall that DFS has linear span. BFS takes span
proportional to the diameter of the graph. In the context of our algorithm the span would be
the diameter of a component (the longest distance between two vertices). The diameter of a
component can be as large as n− 1. A “chain” of n vertices will have diameter n− 1. Even if
the diameter of each component is small, we might have to iterate over the components one by
one. Thus the span in the worst case can be linear in the number of components.

We are instead interested in an approach that can identify all the components in parallel, and
ideally lead to an algorithm for which the span is independent of the diameter. To do this we
will give up on the idea of graph search since it seems to be inherently limited by the diameter
of a graph. Instead we will use the same algorithmic technique we used for implementing
the scan function in Chapter 5, contraction, although in this case we will contract the graph
instead of a sequence. The key idea is to shrink the graph, ideally by a constant fraction in size,
while respecting the connectivity of the graph. We can then solve the problem on the smaller,
contracted graph and from that result compute the result for the actual graph. This approach is
called graph contraction. It is a reasonably simple technique and can be applied to a variety of
problems, beyond just connectivity, including spanning trees and minimum spanning trees. The
graph contraction approach is summarized in Algorithmic Approach 13.10.

The question remains of how to contract the graph. If you recall, in the implementation of the
scan we combined values. The idea for graphs is similar, but we combine vertices. In particular
we partition the vertices of a graph into subsets and then contract each of the subsets (actually
their induced subgraphs) into a single vertex, which we will refer to as a supervertex. To be
useful for graph connectivity, however, we have to be careful how we partition the graph. We
want to make sure the contraction maintains the connectivity of the graph—i.e., a component
should be connected after a contraction if and only if it was connected before the contraction.
For this purpose we will only select partitions for which each induced subgraph is connected.

13.2. GRAPH CONTRACTION 213

Example 13.11. Partitioning the graph in Example 13.1 might generate the partitioning
{{a,b,c} , {d} , {e,f}} as indicated by the following shaded regions:

a

b

c
d

e

f

abc
ef

d

We name the supervertices abc, d, and ef. Note that each of the three parti-
tions is connected by edges within the partition. Partitioning would not return
{{a,b,f} , {c,d} , {e}}, for example, since the subgraph {a,b,f} is not connected by
edges within the component.

Once we have partitioned the graph we can contract each partition into a single vertex. We
note, however, that we now have to do something with the edges since their endpoints are no
longer the original vertices, but instead are the new supervertices. The internal edges within each
partition can be thrown away. For the cross edges we can relabel the endpoints to the new names
of the supervertices. Note, however, this can create duplicate edges (also called parallel edges),
which can be removed.

Example 13.12. For Example 13.11 contracting each partition and replacing the edges.

a

b

c
d

e

f

abc ef

d
abc d ef abc d ef

Partition identified Contracted
Duplicate edges

 removed

In graph contraction this step is applied recursively until we are left with no edges.

214 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

Example 13.13. Contracting a graph down to a single vertex in three rounds.

a

b

c
d

e

f

abc
ef

d

abc
d

ef

Round 1

Round 2

abcd ef

Round 3

abcdef

abcd

abcdef

ef

We are now almost ready to describe an algorithm that uses graph contraction, although we
have not yet described how to find the partitioning and we need to be concrete about how to
represent the graph and the partitioning. For now we will delay the question of how to find the
partition (see Section 13.3) and instead assume that we are given a function partitionGraph
which given a graph returns a new set of supervertices, one per partition, along with a table that
maps each of the original vertices to the supervertex to which it belongs.

Example 13.14. For the partitioning in Example 13.11, partitionGraph returns
the pair:

({abc,d,ef} ,
{a 7→ abc,b 7→ abc,c 7→ abc,d 7→ d,e 7→ ef,f 7→ ef}) .

For the graph we will assume it is represented as an edge set. To simplify things, instead of
assuming every edge is itself a set, we assume it an ordered pair, but appears in both orders. This
is effectively equivalent to a directed graph in which we always have arcs in both directions.

Example 13.15. The representation of an undirected graph as a set of ordered pairs,
with each edge appearing in both directions.

a

b

c

d

e

f

V = {a,b,c,d,e,f}
E = {(a,b), (b,a), (b,d), (d,b), (a,c), (c,a), (c,d), (d,c), (e,f), (f,e)}

13.2. GRAPH CONTRACTION 215

Algorithm 13.16 (Counting Components using Graph Contraction).

1 function countComponents(G = (V,E)) =
2 if |E| = 0 then |V |
3 else let
4 val (V ′, P) = partitionGraph(V,E)
5 val E′ = {(P [u], P [v]) : (u, v) ∈ E | P [u] 6= P [v]}
6 in
7 countComponents(V ′, E′)
8 end

We can now write an algorithm based on graph contraction that counts the number of
connected components in a graph—see Algorithm 13.16. Each contraction on Line 4 returns
the set of supervertices V ′ and a table P mapping every v ∈ V to a v′ ∈ V ′. Line 5 updates all
edges so that the two endpoints are in V ′ by looking them up in P : this is what (P [u], P [v]) is.
Secondly it removes all self edges: this is what the filter P [u] 6= P [v] does. Once the edges are
updated, the algorithm recurses on the smaller graph. The termination condition is when there
are no edges. At this point each component has shrunk down to a singleton vertex.

Example 13.17. The values of V ′, P , and E ′ after each round of the contraction shown
in Example 13.13.

V ′ = {abc,d,ef}
round 1 P ′ = {a 7→ abc,b 7→ abc,c 7→ abc,d 7→ d,e 7→ ef,f 7→ ef}

E ′ = {(abc,ef), (ef,abc), (abc,d), (d,abc), (d,ef), (ef,d)}

V ′ = {abcd,ef}
round 2 P ′ = {abc 7→ abcd,d 7→ abcd,ef 7→ ef}

E ′ = {(abcd,ef), (ef,abcd)}

V ′ = {abcdef}
round 3 P ′ = {abcd 7→ abcdef,ef 7→ abcdef}

E ′ = {}

Naming supervertices. In our example, we gave fresh names to supervertices. It is often more
convenient to pick a representative from each partition as a supervertex. We can then represent
partition as a mapping from each vertex to its representative (supervertex). For example,
we can return the partition {{a,b,c} , {d} , {e,f}} as the pair

({a,d,e} , {a 7→ a,b 7→ a,c 7→ a,d 7→ d,e 7→ e,f 7→ e}) .

From now on we will name supervertices with a representative.

216 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

Algorithm 13.18 (Contraction-based graph connectivity).

1 function connectedComponents(G = (V,E)) =
2 if |E| = 0 then (V, {v 7→ v : v ∈ V })
3 else let
4 val (V ′, P) = partitionGraph(V,E)
5 val E′ = {(P [u], P [v]) : (u, v) ∈ E | P [u] 6= P [v]}
6 val (V ′′, P ′) = connectedComponents(V ′, E′)
7 in
8 (V ′′, {v 7→ P ′[s] : (v 7→ s) ∈ P})
9 end

Computing the components. Our previous algorithm just counted the number of components.
It turns out we can modify the algorithm slightly to compute the components themselves instead
of returning their count. Recall than in the “contraction” based code for scan we did work
both on the way down the recursion and on the way back up, when we added the results from
the recursive call to the original elements to generate the odd indexed values. A similar idea
will work here. The idea is to use the labels of the recursive call on the supervertices, to relabel
all vertices. This is implemented by Algorithm 13.18. This algorithm returns the label of each
component, along with a mapping from each of the initial vertices to its component label.

Example 13.19.

connectedComponents

 a

b

c
d

e

f


might return:

({a} , {a 7→ a,b 7→ a,c 7→ a,d 7→ a,e 7→ a,f 7→ a})

since there is a single component and all vertices will map to that component label. In
this case a was picked as the representative, but any of the initial vertices is a valid
representative, in which case all vertices would map to it.

The changes from countComponents is the that connectedComponents does some-
thing different in the base case and does some work when returning from the recursive call
(Line 8). The base instead of returning the size of V returns all vertices in V along with a
mapping from each one to itself. This is a valid answer since if there are no edges each vertex is
its own component. In the inductive case, when returning from the recursion, Line 8 updates
the mapping P from vertices to supervertices by looking up the component that the supervertex
belongs to, which is given by P ′. This simply involves the look up P ′[s] for every (v 7→ s) ∈ P .

13.3. PARTITIONING THE GRAPH 217

Example 13.20. Consider our example graph (Example 13.19), and assume that
partitionGraph returns:

V ′ = {a,d,e}
P = {a 7→ a,b 7→ a,c 7→ a,d 7→ d,e 7→ e,f 7→ e} .

Since the graph is connected, the recursive call to connectedComponents(V ′, E ′)
will map all vertices in V ′ to the same vertex. Lets say this vertex is a giving:

V ′′ = {a}
P ′ = {a 7→ a, d 7→ a, e 7→ a} .

Now {v 7→ P ′[s] : (v 7→ s) ∈ P} will for each vertex-supervertex pair in P , look up
what that supervertex got mapped to in the recursive call. For example, vertex f maps
to vertex e in P so we look up e in P ′, which gives us a so we know that f is in the
component a. Overall the result is:

{a 7→ a,b 7→ a,c 7→ a,d 7→ a,e 7→ a,f 7→ a} .

13.3 Partitioning the Graph

We have postponed describing how to implement partitionGraph, which identified subsets
of vertices (and their induced subgraphs) to be contracted into a supervertices. Recall that a
property of the graph partitioning is that each partition must be connected. This was important
so that connectivity is maintained on each round. Beyond maintaining connectivity, which is
critical for correctness, there are other properties we would like when generating the partitions
that are important for efficiency. Firstly, we would like to be able to form the partitions without
too much work. Secondly, we would like to be able to form them in parallel. After all, one of the
main goals of graph contraction is to parallelize various graph algorithms. Finally, we would like
the number of partitions to be significantly smaller than the number of vertices. Ideally it should
be at least a constant fraction smaller. This will allow us to contract the graph in O(log |V |)
rounds. In this section we consider two simple methods for forming partitions, each which leads
to a different form of graph contraction.

Edge Contraction: Each partition is either a single vertex or two vertices with an
edge between them.

Star Contraction: Each partition is identified by a star, which consist of a center
vertex and any number of neighboring satellite vertices. The satellites can have
edges between them.

218 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

Edge Contraction

In edge contraction, the idea is to generate a set of partitions each consisting of either two vertices
connected by an edge, or a single vertex.

Example 13.21. An example edge contraction in which every partition consists of two
vertices and an edge between them. This partitioning will reduce the graph to half its
size after contraction.

a

b

c d

e

fa e

c

a e

c

Contract

Note that in general we cannot just have pairs of vertices since the graph might not have an even
number of vertices, but even if it does (no pun intended), it is likely that it cannot be partitioned
into a set of pairs joined by edges. We therefore will be satisfied by some set of disjoint edges
(edges that do not share an endpoint). Finding such a set is a common task in a variety of graph
algorithms, and hence has a name.

Definition 13.22. A vertex matching for an undirected graph G = (V,E) is a subset of
edges M ⊆ E such that no two edges in M share an endpoint.

Example 13.23. A vertex matching for our favorite graph (highlighted edges).

a

b

c

d

e

f

It defines four partitions (circled), two of them defined by the edges in the matching,
{a,b} and {d,f}, and two of them are the left over vertices c and e.

Remark 13.24. The problem of finding the largest vertex matching for a graph is called
the maximum vertex matching problem. It is a well studied problems and there are
several interesting algorithms for the problem, including one that can solve the problem
in O(

√
|V ||E|) work. In this section we do not care whether the matching is maximum,

only that it is large enough, and would like to do it with only linear work.

13.3. PARTITIONING THE GRAPH 219

One way to find a vertex matching is to go through the edges one by one maintaining an
initially empty set M and for each edge, if no edge in M is already incident on its endpoints
then add it to M , otherwise toss it. The problem with this approach is that it is sequential since
each decision depends on previous decisions. If we want to find the vertex matching in parallel
we will likely need to make local decisions at each vertex. One possibility is in for each vertex
in parallel to pick one of its neighbors to pair up with. The problem with this approach is that
multiple vertices might pick edges that connect to the same other vertex. We therefore need a
way to break the symmetry that arises when two vertices try to pair up with the same vertex.

It turns out that we can use randomization to break the symmetry. One approach for
identifying a vertex matching in parallel is to flip a coin for each edge and pick the edge if it
flips heads and all the edges incident on its endpoints flip tails. This guarantees that no two
edges incident on the same vertex are selected. Let us analyze how effective this approach is in
selecting a reasonably large set of edges. We first consider cycle graphs, consisting of a single
cycle and no other edges. In such a graph every vertex has exactly two neighbors.

Example 13.25. A graph consisting of a single cycle.

a

b

c d

e

f

H

T

H
H

T

T

Each edge flips a coin that comes up either heads (H) or tails (T). We pick an edge if
it turns up heads and all other edges incident on its endpoints are tails. In the example
only the edge {c,d} is selected.

We want to determine the probability that an edge is selected in such a graph. Since the coins are
flipped independently at random, and the vertices at each endpoint each have one other neighbor,
the probability that an edge picks heads and its two neighboring edges pick tails is 1

2
· 1
2
· 1
2

= 1
8
.

We now want to analyze how many edges are selected in expectation. Let Re be an indicator
random variable denoting whether e is selected or not, that is Re = 1 if e is selected and 0
otherwise. Recall that the expectation of indicator random variables is the same as the probability
it has value 1 (true). Therefore we have E[Re] = 1/8.

Thus summing over all edges, we conclude that expected number of edges deleted is m
8

(note,
m = n in a cycle graph). In the chapter on randomized algorithms Section 7.3 we argued that
if each round of an algorithm shrinks the size by a constant fraction in expectation, and if the
random choices in the rounds are independent, then the algorithm will finish in O(log n) rounds
with high probability. Recall that all we needed to do is multiply the expected fraction that
remain across rounds and then use Markov’s inequality to show that after some k log n rounds
the probability that the problem size is a least 1 is very small. For a cycle graph, this technique

220 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

leads to an algorithm for graph contraction with linear work and O(log2 n) span—left as an
exercise.

We can improve the probability that we remove an edge by letting each edge pick a random
number in some range and then select and edge if it is the local maximum, i.e., it picked the
highest number among all the edges incident on its end points. This increases the expected
number of edges contracted in a cycle to m

3
, which is significantly better than m

8
.

Although edge contraction works quite well with cycle graphs, we should ask if it works well
with arbitrary graphs? Unfortunately it does not. The problem is that if the vertex that an edge is
incident on has high degree, then it is highly unlikely for the vertex to be picked. Among all
the edges incident an a vertex only one can be picked for contraction. Thus in general, using
edge contraction, we can shrink the graph only by a small amount. For example, consider the
following kind of graph.

Definition 13.26 (Star Graph). A star graph G = (V,E) is an undirected graph with a
center vertex v ∈ V , and a set of edges E that attach v directly to the rest of the vertices,
called satellites, i.e. E = {{v, u} : u ∈ V \ {v}}.

Example 13.27. A star graph with center v and eight satellites.

v

It is not difficult to convince ourselves that on a star graph with n vertices—1 center and
n− 1 satellites—any edge contraction algorithm will take Ω(n) rounds. To fix this problem we
need to be able to form partitions that consist of more than just edges.

Star Contraction

We now consider a more aggressive form of contraction. The idea is to partition the graph into a
set of graphs that each contain a star graph.

13.3. PARTITIONING THE GRAPH 221

Example 13.28. In the graph below (left), we can find 2 disjoint stars (right). The centers
are colored blue and the neighbors (satellites) are green.

The question is how to identify the disjoint stars to form the partitioning. As with edge
contraction, it is possible to construct stars sequentially—pick an arbitrary vertex, attach all
its neighbors to the star, remove the star from the graph, and repeat. However, again, we want
a parallel algorithm that makes local decisions. As in edge contraction, when making local
decisions we need a way to break the symmetry between two vertices that want to become the
center of the star. Again we can use randomization to identify stars. To determine the centers, the
algorithm can flip a coin on each vertex. If the coin comes up heads, that vertex is a star center,
and if it comes up tails, then it is a potential satellite—it is only a potential satellite because quite
possibly, none of its neighbors flipped a head so it has no center to join.

At this point, we have determined every vertex’s potential role, but we aren’t done: for each
satellite vertex, we still need to decide which center it will join. For our purposes, we’re only
interested in ensuring that the stars are disjoint, so it doesn’t matter which center a satellite joins.
We will make each potential satellite arbitrarily choose any center among its neighbors, if it has
any neighboring center.

Example 13.29. An example star partition. Coin flips turned up as indicated in the
figure, where H indicates a center, and T indicates a potential satellite.

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) possible centers for each T choose one center

The vertex c neighbors both a and b which are both centers. In the example it chooses
b to join. The vertex d has no neighboring centers, so it is left on its own. We end up
forming three partitions—the star with center a (with no satellites), the star with center
b (with two satellites), and the singleton d.

222 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

Algorithm 13.30 (Star Partition).

1 function starPartition(G = (V,E), i) =
2 let
3 % select edges that go from a satellite to a center
4 val TH = {(u, v) ∈ E | ¬heads(u, i) ∧ heads(v, i)}

5 % Use table merge to make a mapping from satellites to centers, removing duplicates
6 val P = ∪(u,v)∈TH {u 7→ v}

7 % The supervertices − centers and unmatched satellites
8 val V ′ = V \ domain(P)

9 % Map supervertices to themselves
10 val P ′ = {u 7→ u : u ∈ V ′}

11 in (V ′, P ′ ∪ P) end

Before describing the algorithm for partitioning a graph into stars, we need to say a couple
words about the source of randomness. What we will assume is that each vertex is given a
(potentially infinite) sequence of random and independent coin flips. The ith element of the
sequence can be accessed

heads(v, i) : V × Z→ B .

The function returns true if the ith flip on vertex v is heads and false otherwise. Since most
machines don’t have true sources of randomness, in practice this can be implemented with a
pseudorandom number generator or even with a good hash function.

The algorithm for star contraction is given in Algorithm 13.30. It takes in a graph and a
round number, and returns graph partitioning of the sort returned by partitionGraph. The
algorithm flips coins on each vertex and selects those that point from tail (satellite) to head
(center). It then merges all these edges using table merge. This effectively decides for each
satellite one of the centers it will point to. All the centers and any potential satellites that do not
get mapped to a center, since they do not neighbor a center, are mapped to themselves (Line 10).
Finally we merge the table for the remapped satellites and the other vertices.

13.3. PARTITIONING THE GRAPH 223

Example 13.31. Returning to Example 13.29 and assuming the same flips as given in
that example, we have that:

TH = {(c, a), (c, b), (e, b)} .

These are the (directed) edges from satellites to centers. Now we convert each edge into
a singleton map, and merge them into the mapping:

P = {c 7→ b, e 7→ b} .

Note that the edge (c, a) has been removed since the merging of the map selects only
one element for each key in the domain. Now for all remaining vertices V ′ = V \
domain(P) = {a, b, d} we map them to themselves, giving:

P ′ = {a 7→ a, b 7→ b, d 7→ d} .

The P and P ′ are merge to give the final mapping:

P ′ ∪ P = {a 7→ a, b 7→ b, c 7→ b, d 7→ d, e 7→ b} .

Analysis of Star Contraction. When the stars found by starPartition are contracted,
each star becomes one vertex, so the number of vertices removed is the size of P . In expectation,
how big is P ? The following lemma shows that on a graph with n non-isolated vertices, the size
of P—or the number of vertices removed in one round of star contraction—is at least n/4 in
expectation.

Lemma 13.32. For a graph G with n non-isolated vertices, let Xn be the random
variable indicating the number of vertices removed by starPartition(G, r). Then,
E [Xn] ≥ n/4.

Proof. Consider any non-isolated vertex v ∈ V (G). Let Hv be the event that a vertex v comes up
heads, Tv that it comes up tails, and Rv that v ∈ domain(P) (i.e, it is removed). By definition,
we know that a non-isolated vertex v has at least one neighbor u. So, we have that Tv ∧ Hu

implies Rv since if v is a tail and u is a head v must either join u’s star or some other star.
Therefore, Pr [Rv] ≥ Pr [Tv] Pr [Hu] = 1/4. By the linearity of expectation, we have that the
number of removed vertices is

E

[∑
v:v non-isolated

I {Rv}

]
=

∑
v:v non-isolated

E [I {Rv}] ≥ n/4

since we have n vertices that are non-isolated.

Exercise 13.33. What is the probability that a vertex with degree d is removed.

224 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

Cost Specification 13.34 (Star Contraction). Using ArraySequence and
STArraySequence, we can implement starPartition reasonably efficiently in
O(n + m) work and O(log n) span for a graph with n vertices and m edges.

13.4 Returning to Connectivity

Now lets analyze the cost of countComponents and connectedComponentswhen using
starPartition. Let n be the number of non-isolated vertices. Notice that once a vertex
becomes isolated (due to contraction), it stays isolated until the final round (contraction only
removes edges). Therefore, we have the following span recurrence (we’ll look at work later):

S(n) = S(n′) + O(log n)

where n′ = n−Xn and Xn is the number of vertices removed (as defined earlier in the lemma
about starPartition). But E [Xn] = n/4 so E [n′] = 3n/4. This is a familiar recurrence,
which we know solves to O(log2 n).

As for work, ideally, we would like to show that the overall work is linear since we might
hope that the size is going down by a constant fraction on each round. Unfortunately, this is not
the case. Although we have shown that one can remove a constant fraction of the non-isolated
vertices on one star contract round, we have not shown anything about how many edges we
remove. We can argue that the number of edges removed is at least equal to the number of
vertices since removing a satellite also removes the edge that attaches it to its star’s center. But
this does not help asymptotically bound the number of edges removed. Consider the following
sequence of rounds:

round vertices edges

1 n m
2 n/2 m− n/2
3 n/4 m− 3n/4
4 n/8 m− 7n/8

In this example, it is clear that the number of edges does not drop below m− n, so if there are
m > 2n edges to start with, the overall work will be O(m log n). Indeed, this is the best bound
we can show asymptotically. Hence, we have the following work recurrence:

W (n,m) ≤ W (n′,m) + O(n + m),

where n′ is the remaining number of non-isolated vertices as defined in the span recurrence. This
solves to E [W (n,m)] = O(n + m log n). Altogether, this gives us the following theorem:

Theorem 13.35. For a graph G = (V,E), countComponents using starPartition
graph contraction with an array sequence works in O(|V |+ |E| log |V |) work and O(log2 |V |)
span.

13.4. RETURNING TO CONNECTIVITY 225

Contracting Trees

Our analysis in the previous section was for general graphs. What if we are contracting a forest
of trees instead. Recall that an undirected graph is a forest if it has no cycles and is a tree if it has
no cycles and is connected. A tree on n vertices always has exactly n− 1 edges, and a forest has
at most n− 1 edges. A star is a special case of a tree, since it has no cycles.

The same connectedComponents algorithm based on star contraction can be used for a
forest or tree as for general graphs, but if we use it on trees the assymptotic bound on the work is
better. This is because the number of edges is a forest is never more than the number of vertices,
and hence the number of edges must go down geometrically from step to step (in expectation),
as do the number of vertices. The overal expected work will be a geometric sum of the form:

E [W (n,m)] =
∞∑
i=0

(
3

4

)i

kn = O(n) ,

instead of O(m log n) for general graphs. The span is not affected.

For a graph G = (V,E) consider a subset of edges T ⊂ E that forms a forest (i.e. has
no cycle). Such a subset defines a partitioning of the orginal graph, where each tree is its
own partition. Therefore one way to contract a graph is to identify such a subset T , and
then use connectedComponents(V, T), which does linear work as explained above, as our
partitionGraph routine. We will use this idea in an algorithm for Minimum Spanning Trees
described in the next chapter.

Example 13.36. A graph and a subset of the edges T (in bold) that define a set of three
disjoint trees, each implying a partition:

a

b

c

e

f
d

h

g
i

a

b

c

e

f
d

h

g
i

g

i
j j

a

If we run connectedComponents on T (the middle diagram) we are left with the
desired partitioning with supervertices {a,g,i} and the mapping:

{a 7→ a,b 7→ a,c 7→ a,d 7→ a,e 7→ a,f 7→ a,g 7→ g,h 7→ i,i 7→ u,j 7→ i}

This can be used to contract the original graph what is shown on the right.

226 CHAPTER 13. GRAPH CONTRACTION AND CONNECTIVITY

.

	Graph Contraction and Connectivity
	Preliminaries
	Graph Contraction
	Partitioning the Graph
	Returning to Connectivity

