Chapter 4

Algorithm Analysis

The term “algorithm analysis” refers to mathematical analysis of algorithms for the purposes of
determining their consumption of resources such as the amount of total work they perform, the
energy they consume, the time to execute, and the memory or storage space that they require.
When analyzing algorithms, it is important to be precise enough so that we can compare dif-
ferent algorithms to assess for example their suitability for our purposes or to select the better
one, and to be abstract enough so that we don’t have to look at minute details of compilers and
computer architectures.

To find the right balance between precision and abstraction, we rely on two levels of ab-
straction: asymptotic analysis and cost models. Asymptotic analysis enables abstracting over
small factors contributing to the resource consumption of an algorithm such as the exact time
a particular operation may require. Cost models make precise the cost of operations performed
by the algorithm but usually only up to the precision of the asymptotic analysis. Of the two
forms of cost models, machine-based models and language-based models, in this course , we
use a language-based cost model. Perhaps the most important reason for this is that when using
a machine-based cost model, the complexity of both the analysis and the specification of the al-
gorithm increases because of the need to reason about the mapping parallel algorithm to actual
parallel hardware, which usually involves scheduling of parallel computations over multiple
processors.

In the rest of this chapter, we present a brief overview of asymptotic notation, and then
discuss cost models and define the cost models used in this course . We finish with recurrence
relations and how to solve them.

4.1 Asymptotic Complexity

If we analyze an algorithm precisely, we usually end up with an equation in terms of a variable
characterizing the input. For example, by analyzing the work of the algorithm A for problem P
in terms of its input size, we may obtain the equation: W4(n) = 2nlogn+3n-+4logn+5. By

57

58 CHAPTER 4. ALGORITHM ANALYSIS

applying the analysis method to another algorithm, algorithm B, we may derive the equation:
Wg(n) = 6n + 7log”n + 8logn + 9.

When given such equations, how should we interpret them? For example, which one of the
two algorithm should we prefer? It is not easy to tell by simply looking at the two equations. But
what we can do is to calculate the two equations for varying values of n and pick the algorithm
that does the least amount of work for the values of n that we are interested in.

In the common case, in computer science, what we care most about is how the cost of an
algorithm behaves for large values of n—the input size. Asymptotic analysis offers a technique
for comparing algorithms at such large input sizes. For example, for the two algorithms that we
considered in our example, via asymptotic analysis, we would derive W4 (n) = ©(nlogn) and
Wg(n) = ©(n). Since the first function n log n grows faster that the second n, we would prefer
the second algorithm (for large inputs). The difference between the exact work expressions and
the “asymptotic bounds” written in terms of the “Theta” functions is that the latter ignores so
called constant factors, which are the constants in front of the variables, and lower-order terms,
which are the terms such as 3n and 4 log n that diminish in growth with respect to nlogn as n
increases.

In addition to enabling us to compare algorithms, asymptotic analysis also allows us to
ignore certain details such as the exact time an operation may require to complete on a particular
architecture. Specifically, when designing our cost model, we take advantage of this to assign
most operations unit costs even if they require more that unit work.

Question 4.1. Do you know of an algorithm that compared to other algorithms for
the same problem, performs asymptotically better at large inputs but poorly at smaller
inputs.

Compared to other algorithms solving the same problem, some algorithm may perform bet-
ter on larger inputs than on smaller ones. A classical example is the merge-sort algorithm that
performs ©(nlogn) work but performs much worse on smaller inputs than the asymptotically
less efficient ©(n?)-work insertion sort. Note that we may not be able to tell that insertion-sort
performs better at small input sizes by just comparing their work asymptotically. To do that,
we will need to compare their actual work equations which include the constant factors and
lower-order terms that asymptotic notation omits.

We now consider the three most important asymptotic functions, the “Big-Oh”, “Theta”, and
“Omega.” We also discuss some important conventions that we will follow when doing analysis
and using these notations. All of these asymptotic functions are defined based on the notion of
asymptotic dominance, which we define below. Throughout this chapter and more generally in
this course , the cost functions that we consider must be defined as functions whose domains
are natural numbers and whose range is real numbers. Such functions are sometimes called
numeric functions.

April 29, 2015 (DRAFT, PPAP)

4.1. ASYMPTOTIC COMPLEXITY 59

Definition 4.2 (Asymptotic dominance). Let f(-) and g(-) be two (numeric) functions,
we say that f(-) asymptotically dominates ¢(-) if there exists positive constants ¢ and n
such that for all for all n > ny,

lg(n)| < c- f(n),

When a function f(-) asymptotically dominates another g(-), we say that f(-) grows
faster than g(-): the absolute value of g(-) does not exceed a constant multiple of f(-)
for sufficiently large values.

Big-Oh: O(-). The asymptotic expression O(f(n)) is the set of all functions that are asymp-
totically dominated by the function f(n). Intuitively this means that the set consists of the
functions that grow at the same or slower rate than f(n). We write g(n) € O(f(n)) torefer to a
function g(n) that is in the set O(f(n)). We often think of f(n) being an upper bound for g(n)
because f(n) grows faster than f(n) as n increases.

Definition 4.3. For a function g(n), we say that g(n) € O(f(n)) if there exist positive
constants ng and c such that for all n > ng, we have g(n) < c- f(n).

If g(n) is a finite function (g(n) in finite for all n), then it follows that there exist constants
ky and ko such that for alln > 1,

g(n) < ki- f(n) + ke,

where, for example, we can take k; = cand ko = Y%, |g(i)].

Remark 4.4. Make sure to become very comfortable with asymptotic analysis. Also its
different versions such as the O(-) and €(-).

Exercise 4.5. Can you illustrate graphically when g(n) € O(f(n))? Show different
cases by considering different functions, to hone your understanding.

Omega notation ()(-). The “big-oh” notation gives us a way to upper bound a function but
it says nothing about lower bounds. The asymptotic expression Omega(f(n)) is the set of all
functions that asymptotically dominate the function f(n). Intuitively this means that the set
consists of the functions that grow faster than f(n). We write g(n) € Q(f(n)) to refer to a
function g(n) that is in the set £2(f(n)). We often think of f(n) being a lower bound for g(n).

Definition 4.6. For a function g(n), we say that g(n) € Q(f(n)) if there exist positive
constants ng and c such that for all n > ngy, we have 0 < c.f(n) < g(n).

April 29, 2015 (DRAFT, PPAP)

60 CHAPTER 4. ALGORITHM ANALYSIS

Theta notation: O(-). The asymptotic expression O(f(n)) is the set of all functions that grow
at the same rate as f(n). In other words, the set O(f(n)) is the set of functions that are both in
O(f(n)) and Q(f(n)). We write g(n) € ©(f(n)) to refer to a function g(n) that is in the set
©(f(n)). We often think of f(n) being a tight bound for g(n).

Definition 4.7. For a function g(n), we say that g(n) € ©(f(n)) if there exist positive
constants ng, c1, and co such that for all n > ng, we have 0 < ¢; - f(n) < g(n) <

ca - f(n).

Important conventions. Even though the asymptotic notations O(-), O(-),€2(-) all denote
sets, we use the equality relation instead of set membership to state that a function belongs
to an asymptotic class, e.g., g(n) = O(f(n)) instead of g(n) € O(f(n)). This notation makes
it easier to use the asymptotic notation. For example, in an expression such as 4W (n/2)+O(n),
the O(n) refers to some function g(n) € O(n) that we care not to specify. Be careful, if there
are asymptotics are used multiple times an expression, especially in equalities or other relations.
For example, in 4W (n/2) + O(n) 4+ O(n?), the O(n) and ©(n?) refer to functions g(n) € O(n)
and h(n) € O(n?) that we care not to specify. But in 4W (n/2) + O(n) = ©(n?), we mean to
say that the equality is satisfied such that for any function g(n) = O(n) and we can find some
function h(n) = ©(n?) to satisfy the equality.

4.2 Cost Models: Machine and Language Based

Essentially any analysis must assume a cost model that specifies the resource cost of the oper-
ations that can be performed by an algorithm. Over time, two ways to define cost models have
emerged: machine-based and language-based models.

A machine-based model defines the cost of each (kind of) instruction that can be executed
by the machine. When using a machine-based model for analysis, we study the instructions
executed by the machine when running an algorithm to bound the resources of interest. A
language-based model defines cost as a function from the expressions of the language to cost
metric. Such a function is usually defined as a recursive function over the different forms of
expressions in the language. When using a language-based model for analysis, we analyze the
algorithm by using the cost function provided by the model.

Since we are usually interested in performing asymptotic analysis, we can usually simplify
our cost functions in both models by ignoring “constant factors” that depend on the specifics
of the actual practical hardware our algorithms may execute on. For example, in a machine
model, we can assign unit costs to many different kinds of instructions, even though some may
be more expensive than others. Similarly, in a language-based model, we can assign unit costs
to all primitive operations on numbers, even though the costs of such operations usually vary.

April 29, 2015 (DRAFT, PPAP)

4.2. COST MODELS: MACHINE AND LANGUAGE BASED 61

Question 4.8. What are the advantages of using a machine based and a language-based
model?

There are certain advantages and disadvantages to both models.

The advantage of using machine models is that it is easier to predict the cost of an algorithm
when it is executed on actual hardware that is consistent with the machine model. The disad-
vantage is the complexity of analysis and expressiveness of the languages that can be used for
specifying the algorithms. When using a machine model, we have to reason about how the algo-
rithm compiles and runs on that machine. For sequential programs this can be straightforward
if the algorithm is expressed in a language that maps easily to the machine model. For example,
if we express our algorithm in a low-level language such as C, cost analysis based on a machine
model that represents a von Neumanm machine is straightforward because there is an almost
one-to-one mapping of statements in C to the instructions of such a machine. For higher-level
languages, this becomes somewhat trickier. There may be uncertainties, for example, about the
cost of automatic memory management, or the cost of dispatching in an object-oriented lan-
guage. For parallel programs, cost analysis based on machine models even more tricky, since
we may have to reason about how parallel tasks of the algorithm are scheduled on the processors
of the machine. Due to this gap between the level at which algorithms are analyzed (machine
level) and the level they are usually implemented (programming-language level), there can be
difficulties in implementing an algorithm in a high-level language in such a way that matches
the bound given by the analysis.

The advantage of using language-based models is that it is easier to predict analyze the
algorithm. The disadvantage is that the predicted cost bounds may not precisely reflect the cost
observed when the algorithm is executed on actual hardware. This imprecision of the language
model, however, can be minimized and in fact essentially eliminated by defining the model to
be consistent with the machine model and the programming-language environment assumed
such as the compiler and the run-time system. When analyzing algorithms in a language-based
model we don’t need to care about how the language compiles or runs on the machine. Costs are
defined directly in the language, specifically its syntax and its dynamic semantics that specifies
how to evaluate the expressions of the language. We thus simply consider the algorithm as
expressed and analyze the cost by applying the cost function provided by the model.

Remark 4.9. We note that both machine models and language-based models usually
abstract over existing architectures and programming languages respectively. This is
necessary because we wish to our cost analysis to have broader relevance than just
a specific architecture or programming language. For example, machine models are
usually defined to be valid over many different architectures such as an Intel Nehalem
or AMD Phenom. Similarly, language-based models are defined to be applicable to a
range of languages. In this course , we use an abstract language that is essentially
lambda calculus with some syntactic sugar. As you may know the lambda calculus can
be used to model many languages.

April 29, 2015 (DRAFT, PPAP)

62 CHAPTER 4. ALGORITHM ANALYSIS

In the sequential algorithms literature, much work is based on machine models rather than
language-based model, partly because the mapping from language constructs to machine cost
(time or number of instructions) can be made simple in low-level languages, and partly because
much work on algorithm predates or coincides with the development of higher-level languages.
For parallel algorithms, however, many years of experience shows that machine based models
are difficult to use, especially when considering higher-level languages that are commonly used
in practice today. For this reason, in this course we will use a language-based cost model.
Our language-based model allows us to use abstract costs, work and span, which have no direct
meaning on a physical machine.

4.3 The RAM Model for Sequential Computation

Traditionally, algorithms have been analyzed in the Random Access Machine (RAM)' model.
This model assumes a single processor accessing unbounded memory indexed by the non-
negative integers. The processor interprets sequences of machine instructions (code) that are
stored in the memory. Instructions include basic arithmetic and logical operations (e.g. +, —, *,
and, or, not), reads from and writes to arbitrary memory locations, and conditional and uncon-
ditional jumps to other locations in the code. The cost of a computation is measured in terms of
the number of instructions executed by the machine, and is referred to as time.

This model is quite adequate for analyzing the asymptotic runtime of sequential algorithms;
most work on sequential algorithms to date has used this model. It is therefore important to
understand the model, or at least know what it is. One reason for the RAM’s success is that
it is relatively easy to reason about the cost of algorithms because algorithmic pseudo code
and sequential languages such as C and C++ can easily be mapped to the model. The model,
however, should only be used for deriving asymptotic bounds (i.e., using big-O, big-Theta and
big-Omega) and not for trying to predict exact runtimes. One reason for this is that on a real
machine not all instructions take the same time, and furthermore not all machines have the same
instructions.

We note that one problem with the RAM model is that it assumes that accessing all memory
locations has the same cost. On real machines this is not the case. In fact, there can be a factor
of over 100 between the time for accessing a word of memory from the first level cache and
accessing it from main memory. Various extensions to the RAM model have been developed to
account for this cost. For example one variant is to assume that the cost for accessing the i
memory location is f(7) for some function f, e.g. f(i) = log(7). Fortunately, however, most of
the algorithms that turn out to be good in these more detailed models are also good in the RAM.
Therefore analyzing algorithms in the simpler RAM model is often a reasonable approximation
to analyzing in the more refined models. Hence the RAM has served quite well despite not fully
accounting for the variance in memory costs. The model we use in this course also does not
account for the variance in memory costs, but as with the RAM the costs can be refined.

'Not to be confused with Random Access Memory (RAM)

April 29, 2015 (DRAFT, PPAP)

4.4. THE PARALLEL RAM MODEL 63

4.4 The Parallel RAM Model

For our purposes, the more serious problem with the RAM model is that it is sequential. One
way to extend the RAM to allow parallelism is simply to use multiple processors which share
the same memory. This is referred to as the Parallel Random Access Machine (PRAM). In the
model all of p processors run the same instruction on each step, although typically on different
data. For example if we had an array of length p, each processor could add one to its own
element allowing us to increment all elements of the array in constant time.

We will not be using the PRAM model since it is awkward to work with, both because it
is overly synchronous and because it requires the user to map computation to processors. For
simple parallel loops over n elements we could imagine dividing up the elements evenly among
the processors—about n /p each, although there is some annoying rounding required since n is
typically not a multiple of p. If the cost of each iteration of the loop is different then we would
further have to add some load balancing. In particular simply giving n/p to each processor
might be the wrong choice—one processor could get stuck with all the expensive iterations.
For computations with nested parallelism, such as divide-and-conquer algorithms the mapping
is much more complicated, especially given the highly synchronous nature of the model.

Even though we don’t use the PRAM model, most of the ideas presented in this course also
work with the PRAM, and many of them were originally developed in the context of the PRAM.

4.5 The Work-Span Model

In this course , we will use a language-based cost model to analyze parallel algorithms. From
the discussion in Section 4.2, you may recall that the key point that we have be careful about
in defining a cost model is that it is can be realized by implementing the necessary compilation
and run-time system support. Indeed, for the cost-model that we describe here, this is the case
(see Section 4.6 for more details).

Work and Span. The cost model that we use throughout this course is based on two cost met-
rics: work and span. Roughly speaking, the work corresponds to the total number of operations
we perform, and span to the longest chain of dependencies in the computation.

Example 4.10.
W(7+3) = Work of adding 7 and 3
S(fib(11)) = Span for calculating the 11" Fibonacci number
W(mySort(S)) = WorkformySort applied to the sequence S

Note that in the third example the sequence S is not defined within the expression. Therefore
we cannot say in general what the work is as a fixed value. However, we might be able to use

April 29, 2015 (DRAFT, PPAP)

64 CHAPTER 4. ALGORITHM ANALYSIS

asymptotic analysis to write a cost in terms of the length of s, and in particular if mySort is a
good sorting algorithm we would have:

W(mySort(S)) = O(|S|log|S|) .

Often instead of writing |.S| to indicate the size of the input, we use n or m as shorthand. Also
if the cost is for a particular algorithm we use a subscript to indicate the algorithm. This leads
to the following notation

Waysort(n) = O(nlogn) .

where n is the size of the input of mysort. When obvious from the context (e.g. when in a
section on analyzing my Sort) we sometimes drop the subscript, giving W (n) = O(nlogn).

Definition 4.11 shows the precise definitions of the work and span of PML, the language that
we use in this course , by using compositional rules over expressions in the language. In the
definition and throughout this course , we write W (e) for the work of the expression and S/(e)
for its span. As would be expected from a language-based model, the definition follows the def-
inition of the expression language for PML (Section 1.5). We make one simplifying assumption
in the presentation: instead of considering general bindings, we only consider the case where a
single variable is bound to the value of the expression.

April 29, 2015 (DRAFT, PPAP)

4.5. THE WORK-SPAN MODEL 65

Definition 4.11 (PML Cost Model). The work and span of PML expressions (Sec-
tion 1.5) are defined as follows. The notation Eval(e) evaluates the expression e and
returns the result, and the notation [v/x] e indicates that all free (unbound) occurrences
of the variable x in the expression e are replaced with the value v.

W(v) =

W(np=e) = 1

W(e; e2) = Wi(ey) + W(ez2) + W([Eval(es)/x] e3) + 1
where Eval(e;) = fn z = e3

W (e1 op €2) = Wie) +Wiez) +

Wier, e) = Wier) +Wiez) +

Wier || e2) = Wi(er) + Wi(ez) +

W (if ¢, then e, else ¢5) — { %Ezl EZ; i 1 oEtvhil;E;llze True

W(letz =e;inesend) = Wi(ey)+ W([Eval(er)/z] e2) + 1

Wi((e)) e

W(v) =1

S(fnp=e) =1

S(eq ez) = S(e1) + S(e2) +1

S(ey op es) = S(e1) + S(e2) +1

S(ey, e2) = S(e1) + S(e2) +1

S(ey || e2) = max (S(e1),S(ez)) + 1

S(if e, then e, else e3) = { ggz; j__ ggzz; i 1 f;ilﬁfvlize: frue

S(letz =e;inesend) = S(ey) + S([Eval(er)/x] e2) +1

S((e)) = S(e)

As an example, consider the expression e; + e; where e; and ey are themselves other ex-
pressions (e.g. function calls). Note that this is an instance of the rule the case e; op ey, where
op is a plus operation. In PML, we evaluate this expressions by first evaluating e; and then e
and then computing the sum. The work of the expressions is therefore

Wi(er +e3) =Wiey) + Wi(es) + 1.

The additional 1 accounts for computation of the sum.

For the 1et expression we need to first evaluate e; and assign it to « before we can evaluate
es. Hence the fact that the span is composed sequentially, i.e., by adding the spans.

April 29, 2015 (DRAFT, PPAP)

66 CHAPTER 4. ALGORITHM ANALYSIS

Example 4.12. Let expressions compose sequentially.

W(let a = £(x) in g(a) end) = 1+W(f(x))+ W(g(a))
S(let a = £(x) in g(a) end) = 1+S(f(x))+ S(9(a))

Question 4.13. In PML, when are expressions evaluated in parallel?

In PML, we use the notation (e; || e5) to mean that the two expressions are evaluated in
parallel. The result is a pair of values containing the two results. As a result, the work and span
for all expressions except for the parallel construct || are defined in the same way. As we will
see later in the course , in addition to the || construct, we assume the set-like notation such as
{f(z) : © € A} to be evaluated in parallel, i.e., all calls to f(x) run in parallel.

Example 4.14. The expression (£1b(6) || £1b(7)) runs the two calls to £ib in parallel
and returns the pair (8,13). It does work

1+ W (£ib(6)) + W(£ib(7))

and span

1 +max(S(£ib(6)),S(£ib(7))) .

If we know that the span of f1ib grows with the input size, then the span can be simpli-
fiedto 1+ S(£ib(7)).

Remark 4.15. Since in this book we are assuming purely functional programs, it is
always safe to run things in parallel if there is no explicit sequencing. Since in PML,
we evaluate e, and ey sequentially, the span of the expression is calculated in the same
way:

S(Gl a4F 62) = 5(61) aF 5(62) + 1.

Note that this does not mean that the span and the work of the expressions are the same!
Since PML is purely functional language, we could have in fact evaluated e, and e5 in
parallel, wait for the to complete and perform the summation. In this case the span of
would have been

S(er + e2) = max (S(ep), S(ez)) + 1.

Note that since we have to wait for both of the expressions to complete, we take the
maximum of their span. Since the can perform the final summation serially after they
both return, we add the 1 to the final span.

In this book, however, to make it more clear whether expressions are evaluated sequen-
tially or in parallel we will assume that expressions are evaluated in parallel only when
indicated by the syntax, i.e., when they are composed with the explicit parallel form.

April 29, 2015 (DRAFT, PPAP)

4.5. THE WORK-SPAN MODEL 67

Remark 4.16. As there is no || construct in the ML, in your assignments you will need
to specify in comments when two calls run in parallel. We will also supply an ML
function par (f1,f2) withtype (unit —-> «) X (unit —-> () —> a x f.
This function executes the two functions that are passed in as arguments in parallel and
returns their results as a pair. For example:

par (fn => fib(6), fn => fib (7))

returns the pair (8,13). We need to wrap the expressions in functions in ML so that we
can make the actual implementation run them in parallel. If they were not wrapped both
arguments would be evaluated sequentially before they are passed to the function par.
Also in the ML code you do not have the set notation { f (x) : © € A}, but as mentioned
before, it is basically equivalent to a map. Therefore, for ML code you can use the rules:

Winap f {50, 501)) = 1+ 3 W(/(5)

Smap f (S0, 5n1)) =1+ hax S(f(sy))

n
7=

Parallelism: An additional notion of cost that is important in comparing algorithms is the par-
allelism of an algorithm. Parallelism, sometimes called average parallelism, is simply defined
as the work over the span:

P=__
S

Parallelism informs us approximately how many processors we can use efficiently.

Example 4.17. For a mergesort with work 6(n log n) and span 0(log® n) the parallelism
would be (n/logn).

Suppose n = 10,000 and if W(n) = 6(n?) ~ 10'? and S(n) = 6(nlogn) ~ 10° then
P(n) ~ 107, which is a lot of parallelism. But, if W (n) = 0(n?) ~ 108 then P(n) ~ 103,
which is much less parallelism. The decrease in parallelism is not because of the span
was large, but because the work was reduced.

Question 4.18. What are ways in which we can increase parallelism?

We can increase parallelism by decreasing span and/or increasing work. Increasing work,
however, is not desirable because it leads to an inefficient algorithm.

Definition 4.19 (Work efficiency). We say that a parallel algorithm is work efficient if
it perform asymptotically the same work as the best known sequential algorithm for that
problem.

April 29, 2015 (DRAFT, PPAP)

68 CHAPTER 4. ALGORITHM ANALYSIS

Example 4.20. A (comparison-based) parallel sorting algorithm with ©(nlogn) work
is work efficient; one with ©(n?) is not, because we can sort sequentially with ©(n log n)
work.

Designing parallel algorithms. In parallel-algorithm design, we aim to keep parallelism as
high as possible but without increasing work. In general the goals in designing efficient algo-
rithms are

1. first priority: to keep work as low as possible, and

2. second priority: keep parallelism as high as possible (and hence the span as low as possi-
ble).

In this course we will mostly cover work-efficient algorithms where the work is the same or
close to the same as the best sequential time. Indeed this will be our goal throughout the course.
Now among the algorithm that have the same work as the best sequential time we will try to
achieve the greatest parallelism.

4.6 Scheduling

An important advantage of the work-depth model is that is allows us to design parallel algo-
rithms without having to worry about the details of how they are executed on an actual parallel
machine. In other words, we never have to worry about mapping of the parallel computation to
processors, i.e., scheduling.

Question 4.21. Is scheduling a challenging task? Why?

Scheduling can be challenging because a parallel algorithm generate tasks on the fly as it
runs, and it can generate a massive number of them, typically much more than the number of
processors available when running.

Example 4.22. A parallel algorithm with ©(n/logn) parallelism can easily generate
millions parallel subcomptutations or task at the same time, even when running on a
multicore computer with for example 10 cores.

April 29, 2015 (DRAFT, PPAP)

4.6. SCHEDULING 69

Scheduler. Mapping parallel tasks to available processor so that each processor remains busy
as much as possible is the task of a scheduler. The scheduler works by taking all parallel tasks,
which are generated dynamically as the algorithm evaluates, and assigning them to processors.
If only one processor is available, for example, then all tasks will run on that one processor. If
two processor are available, the task will be divided between the two.

Question 4.23. Can you think of a scheduling algorithm?

Greedy scheduling. We say that a scheduler is greedy if whenever there is a processor avail-
able and a task ready to execute, then it assigns the task to the processor and start running it
immediately. Greedy schedulers have a very nice property that is summarized by the following:

Definition 4.24. The greedy scheduling principle says that if a computation is run on p
processors using a greedy scheduler, then the total time (clock cycles) for running the
computation is bounded by

@.1) T, < % +5

where W is the work of the computation, and S is the span of the computation (both
measured in units of clock cycles).

This is actually a very powerful statement. The time to execute the computation cannot be
any better than % clock cycles since we have a total of W clock cycles of work to do and the
best we can possibly do is divide it evenly among the processors. Also note that the time to
execute the computation cannot be any better than S clock cycles since S represents the longest
chain of sequential dependencies. Therefore the very best we could do is:

T, > max <E, S>
p

We therefore see that a greedy scheduler does reasonably close to the best possible. In
particular ™~ 45 is never more than twice max(*}",) and when ' >> S the difference between
the two is very small. Indeed we can rewrite equation 4.1 above in terms of the parallelism
P = W/S as follows:

I

+

S

W
P
=

SEER IR

April 29, 2015 (DRAFT, PPAP)

70 CHAPTER 4. ALGORITHM ANALYSIS

Therefore as long as P > p (the parallelism is much greater than the number of processors)
then we get near perfect speedup. (Speedup is W/T,, and perfect speedup would be p).

Remark 4.25. No real schedulers are fully greedy. This is because there is overhead in
scheduling the job. Therefore there will surely be some delay from when a job becomes
ready until when it starts up. In practice, therefore, the efficiency of a scheduler is quite
important to achieving good efficiency. Also the bounds we give do not account for
memory effects. By moving a job we might have to move data along with it. Because of
these effects the greedy scheduling principle should only be viewed as a rough estimate
in much the same way that the RAM model or any other computational model should be
Jjust viewed as an estimate of real time.

4.7 Analysis of Shortest-Superstring Algorithms

As examples of how to use our cost model we will analyze a couple of the algorithms we de-
scribed for the shortest superstring problem: the brute force algorithm and the greedy algorithm.

4.7.1 The Brute Force Shortest Superstring Algorithm

Recall that the idea of the brute force algorithm for the SS problem is to try all permutations of
the input strings and for each permutation to determine the maximal overlap between adjacent
strings and remove them. We then pick whichever remaining string is shortest, if there is a
tie we pick any of the shortest. We can calculate the overlap between all pairs of strings in a
preprocessing phase. Let n be the size of the input S and m be the total number of characters
across all strings in .5, i.e.,

m = Z |s].

seES

Note that n < m. The preprocessing step can be done in O(m?) work and O(logn) span (see
analysis below). This is a low order term compared to the other work, as we will see, so we can
ignore it.

Now to calculate the length of a given permutation of the strings with overlaps removed we
can look at adjacent pairs and look up their overlap in the precomputed table. Since there are
n strings and each lookup takes constant work, this requires O(n) work. Since all lookups can
be done in parallel, it will require only O(1) span. Finally we have to sum up the overlaps and
subtract it from m. The summing can be done with a reduce in O(n) work and O(log n) span.
Therefore the total cost is O(n) work and O(logn) span.

As we discussed in the last lecture the total number of permutations is n!, each of which we
have to check for the length. Therefore the total work is O(nn!) = O((n+1)!). What about the
span? Well we can run all the tests in parallel, but we first have to generate the permutations.

April 29, 2015 (DRAFT, PPAP)

4.7. ANALYSIS OF SHORTEST-SUPERSTRING ALGORITHMS 71

One simple way is to start by picking in parallel each string as the first string, and then for each
of these picking in parallel another string as the second, and so forth. The pseudo code looks
something like this:

1 function permutations(S) =

2 if |S|=1 then {S}

3 else

4 flatten({append({s),p)

5 : s€S, pe permutations(S\s)})

What is the span of this code?

4.7.2 The Greedy Shortest Superstring Algorithm

We’ll consider a straightforward implementation, although the analysis is a little tricky since the
strings can vary in length. First we note that calculating overlap(sy, s2) and join(sy, sg)
can be done in O(|s1||s2|) work and O(log(|s1| + |s2|)) span. This is simply by trying all
overlap positions between the two strings, seeing which ones match, and picking the largest.
The logarithmic span is needed for picking the largest matching overlap using a reduce.

Let W,, and S, be the work and span for calculating all pairs of overlaps (the line {(overlap
(siy55),8i,85) = s; € S,s; € S,s; # s;}), and for our set of input snipets S recall that
m = ZxES |£C‘

April 29, 2015 (DRAFT, PPAP)

72 CHAPTER 4. ALGORITHM ANALYSIS

We have

W, < Z Z W(overlap(s;,s;)))

i=1 j=1

= 33 0dsillsy)

i=1 j=1

DN (ky + kalsills;l)

i=1 j=1

= kn®+ky ZZ(‘&H%D

i=1 j=1

= ki’ +ky Y <|si| > |sj|)
j=1

=1

IN

n

= kan’ 4k > (|silm)

i=1

= kn®+ k‘gmz |si
i=1

= k1n2 + kaQ

€ O(m?) since m > n.
and since all pairs can be done in parallel,

Sop < m%lx m%lx S(overlap(s;,s;)))
i= j=

€ O(logm)

The arg max for finding the maximum overlap can be computed in O(m?) work and O(logm)
span using a simple reduce. The other steps have less work and span. Therefore, not including
the recursive call each call to greedyApproxSS costs O(m?) work and O(log m) span.

Finally, we observe that each call to greedyApproxSS creates S’ with one fewer element
than S, so there are at most n calls to greedyApproxSS. These calls are inherently sequential
because one call must complete before the next call can take place. Hence, the total cost for the
algorithm is O(nm?) work and O(nlogm) span, which is highly parallel.

Exercise 4.26. Come up with a more efficient way of implementing the greedy method.

April 29, 2015 (DRAFT, PPAP)

4.8. COST ANALYSIS WITH RECURRENCES 73

4.8 Cost Analysis with Recurrences

The cost of many of the algorithms considered in this course can be analyzed by using recur-
rences, which are equality or inequality relations that specify a quantity by reference to itself.
Such recurrences are especially common in recursive algorithms, where they usually follows
the recursive structure of the algorithm, but are a function of size of the arguments instead of
the actual values. While recurrence relations are informative to the trained eye, they are not as
useful as closed form solutions, which are immediately available. In this section, we will review
the three main methods for solving recurrences.

For example, we can write the work of the merge-sort algorithm with a recurrence of the
form W (n) = 2W(n/2) + O(n). This corresponds to the fact that for an input of size n, merge
sort makes two recursive calls of size n/2, and also performs O(n) other work. In particular
the merge itself requires O(n) work. Similarly for span we can write a recurrence of the form
S(n) = max(S(n/2),5(n/2)) 4+ O(logn) = S(n/2) + O(log n). Since the two recursive calls
are parallel, we take the maximum instead of summing them as in work, and since the merge
function has to take place after them and has span O(logn) we add O(logn).

In the rest of this section, we discuss methods for solving such recurrences after noting a
few conventions commonly employed when setting up and solving recurrences.

Conventions and techniques. When we analyze algorithm using recurrences, we usually ig-
nore several technical details. For example, when stating the recurrence for merge sort, we
completely ignored the bases cases, we stated only the recursive case. A more precise state-
ment of the recursion would be

0(1) if n<l1
W(n) = { 2W(n/2) + O(n) otherwise

Question 4.27. Why is this justified?

We justify omitting base cases because by definition any algorithm performs constant work
on constant-size input. Considering the base case usually changes the closed-form solution
of the recursion only by a constant factor, which don’t matter in asymptotic analysis. Note
however that an algorithm might have multiple cases depending on the input size, and some of
those cases might not be constant. It is thus important when writing the recursive relation to
determine constants from non-constants.

Question 4.28. There is still an imprecision in the recursion stated above for merge
sort. Can you see what it is?

April 29, 2015 (DRAFT, PPAP)

74 CHAPTER 4. ALGORITHM ANALYSIS

There is one more imprecision in the recursion that we stated for merge sort. Note that the size
of the input to merge sort n, and in fact many other algorithms, are natural numbers. But n/2
is not always a natural number. In fact, the recursion that we stated is precise only for powers
of 2. A more precise statement of the recursion would have been:

(o) if n<1
W(n) = { W([n/2]) +W([n/2]) + O(n) otherwise.

We ignore floors and ceiling because they change the size of the input by at most one, which
again does not usually affect the closed form by more than a constant factor.

When stating recursions, we may use asymptotic notation to express certain terms such as
the O(n) in our example. How do you perform calculations with such terms? The trouble is
that if you add any two O(n) terms what you get is a O(n) but you can’t do that addition a
non-constant many times and still have the result be O(n). To prevent mistakes in calculations,
we often replace such terms with a non-asymptotic term and do our calculations with that term.
For example, we may replace O(n) with n, 2n, 2n + logn + 3, 3n + 5, or with something
parametric such as cin + ¢, where c; and ¢, are constants. Such kinds of replacement may
introduce some more imprecision to our calculations but again they usually don’t matter as they
change the closed-form solution by a constant factor.

The Tree Method. Using the recursion W (n) = 2W (n/2) + O(n), we will review the tree
method which you have seen in 15-122 and 15-251. Our goal is to derive a closed form solution
to this recursion.

The idea of the tree method is to consider the recursion tree of the recurrence and to derive
an expression that bounds the cost at each level. We can then calculate the total cost by summing
over all levels.

To apply the method, we start by replacing the asymptotic notation in the recursion. By the
definition of asymptotic complexity, we can establish that

Wi(n) < 2W(n/2)+c1-n+ co,

where c; and ¢ are constants. We now draw a tree to represent the recursion. Since there are
two recursive calls, the tree is a binary tree, where each node has 2 children, whose input is
half the size of the size of the parent node. We then annotate each node in the tree with its cost
noting that if the problem has size m, then the cost, excluding that of the recursive calls, is at
most ¢; - m + co. Figure 4.1 shows the recursion tree annotated with costs.

To apply the tree method, there are some key questions we should ask ourselves to aid
drawing out the recursion tree and to understand the cost associated with the nodes:

e How many levels are there in the tree?

e What is the problem size at level 7?7

April 29, 2015 (DRAFT, PPAP)

4.8. COST ANALYSIS WITH RECURRENCES 75

A -- (01(n/4)+c2> (01(n/4)+02> (01(n/4)+02> (01(n/4)+02> --cyn+4dcy
° ° ° °

Figure 4.1: Recursion three for the recursion W (n) < 2W(n/2) + ¢ym + co. Each level is
annotated with the problem size and the cost at that level.

e What is the cost of each node in level ¢?
e How many nodes are there at level 2?

e What is the total cost across level ¢?

Our answers to these questions lead to the following analysis: We know that level ¢ (the root
is level i = 0) contains 2’ nodes, each costing at most ¢;(n/2") + co. Thus, the total cost in level
7 1s at most

20 . (clg—i—cQ) = ¢ -n+2" e

Since we keep halving the input size, the number of levels is bounded by 1 + log n. Hence,
we have

logn
Wi(n) < Z(cl-n+2i-cg)
i=0
= an(l+logn)+cn+5+5%4+--+1)
< en(l+logn) + 2en
€ O(nlogn),

where in the second to last step, we apply the fact that for a > 1,

a™tt —1

l4a+ 4a"=— <a"™.
a—1

The Brick Method, a Variant of the Tree Method. The tree method involves determining
the depth of the tree, computing the cost at each level, and summing the cost across the levels.

April 29, 2015 (DRAFT, PPAP)

76 CHAPTER 4. ALGORITHM ANALYSIS

Usually we can easily figure out the depth of the tree and the cost of at each level relatively
easily—but then, the hard part is taming the sum to get to the final answer.

It turns out that there is a special case in which the analysis becomes simpler: when the costs
at each level grow geometrically, shrink geometrically, or stay approximately equal. By recog-
nizing whether the recurrence conforms with one of these cases, we can almost immediately
determine the asymptotic complexity of that recurrence.

The vital piece of information is the ratio of the cost between adjacent levels. Let L; denote
the total cost at level ¢ of the recursion tree. We now check if L, are consistent with one of the
following three cases. For the discussion below let d denote the depth of the tree.

Leaves Dominated Balanced Root Dominated

Each level is larger than the | All levels have approximately | Each level is smaller than the
level before it by at least a con- | the same cost. level before it by at least a con-
stant factor. That is, there is a stant factor. That is, there is a
constant p > 1 such that for all L constant p < 1 such that for all

level 4, Lit1 > p- L; Tt level 4, Lit1 < p- L;
ottt
— ottt R
T ottt
ottt e+t
+Httt+t ++
Implication: O(Lg) Implication: O(d - max; L;) | Implication: O(Ly)

The house is stable, with a | The house is sort of stable, | The house will tip over.
strong foundation. but don’t build too high.

You might have seen the “master method” for solving recurrences in previous classes. We
do not like to use it since it only works for special cases and does not give an intuition of what is
going on. However, we will note that the three cases of the master method correspond to special
cases of leaves dominated, balanced, and root dominated.

The Substitution Method. Using the definition of big-O, we know that
W(n) < 2W(7’L/2) + 1N+ co,
where ¢; and ¢y are constants.

Besides using the recursion tree method, can also arrive at the same answer by mathematical
induction. If you want to go via this route (and you don’t know the answer a priori), you’ll need
to guess the answer first and check it. This is often called the “substitution method.” Since
this technique relies on guessing an answer, you can sometimes fool yourself by giving a false
proof. The following are some tips:

April 29, 2015 (DRAFT, PPAP)

4.8. COST ANALYSIS WITH RECURRENCES 77

1. Spell out the constants. Do not use big-O—we need to be precise about constants, so
big-O makes it super easy to fool ourselves.

2. Be careful that the induction goes in the right direction.

3. Add additional lower-order terms, if necessary, to make the induction go through.

Let’s now redo the recurrences above using this method. Specifically, we’ll prove the fol-
lowing theorem using (strong) induction on n.

Theorem 4.29. Let a constant k > 0 be given. If W(n) < 2W(n/2) + k- n forn > 1 and
W (1) < k forn < 1, then we can find constants 1 and ko such that

Wi(n) < k1-nlogn + kK.

Proof. Let k; = 2k and ko = k. For the base case (n = 1), we check that W (1) = k < k5. For
the inductive step (n > 1), we assume that

W(n/2) < k1 - §log(3) + ke,

And we’ll show that W (n) < k; - nlogn + ky. To show this, we substitute an upper bound for
W (n/2) from our assumption into the recurrence, yielding

Wi(n) < 2W(n/2)+k-n
2(k1 - 5log(5) + ko) +k-n
= rn(logn — 1)+ 2k + k- n

rkinlogn + ko + (k-n+ Ky — Ky - n)

(VARVAN

IA

kinlogn + ko,

where the final step follows because k - n + k2 — k1 -n < O aslongasn > 1. [

April 29, 2015 (DRAFT, PPAP)

78 CHAPTER 4. ALGORITHM ANALYSIS

Figure 4.2: Abstraction is a powerful technique in computer science. One reason why is that it
enables us to use our intelligence more effectively allowing us not to worry about all the details
or the reality. Paul Cezanne noticed that all reality, as we call it, is constructed by our intellect.
Thus he thought, I can paint in different ways, in ways that don’t necessarily mimic vision, and
the viewer can still create a reality. This allowed him to construct more interesting realities. He
used abstract, geometric forms to architect reality. Can you see them in his self-portrait? Do
you think that his self-portrait creates a reality that is much more three dimensional, with more
volume, more tactile presence than a 2D painting that would mimic vision? Cubists such as
Picasso and Braque took his ideas on abstraction to the next level.

April 29, 2015 (DRAFT, PPAP)

	Algorithm Analysis
	Asymptotic Complexity
	Cost Models: Machine and Language Based
	The RAM Model for Sequential Computation
	The Parallel RAM Model
	The Work-Span Model
	Scheduling
	Analysis of Shortest-Superstring Algorithms
	The Brute Force Shortest Superstring Algorithm
	The Greedy Shortest Superstring Algorithm

	Cost Analysis with Recurrences

