
SML Style Guide

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014)

January 13th, 2014

1 Preface

We will grade the style of your code, so keep your style consistent, readable and simple! Here are
some suggestions to that end, although keep in mind that you certainly don’t need to strictly adhere
to all of these to produce well styled code, and you haven’t necessarily produced well styled code just
by following all the rules.

2 General Guidelines

• No lines over 80 columns. This is far more important than many people think it is. Follow
this as a hard rule. This is even more important in this class because autolab will wrap lines
that are longer than 80 characters and make it much more difficult for us to read your code.
Since this is no longer an intro-level course, we will deduct points once we see lines over 80
characters long.

• Never use tabs. Change your editor settings to always replace tab characters with spaces. Use
2 spaces for each tab. Some prefer to indent 4 spaces after fun declarations, or other places.
Whatever you choose, be consistent!

• Comment when necessary; no less, no more. Ideally, well-chosen (not necessarily long)
variable names should make the purpose of individual lines obvious; too many comments
breaks the flow of the code and makes it hard to read. We can read SML, so don’t put comments
that just describe exactly what each line of code does. Instead put comments that describe your
algorithm or particular intricacies of your code at a higher level. The purpose of comments is
to make it easier to understand the code, so comments that say the exact same thing as the
code are not only useless, but also increase the volume of the code and make it harder to read!

• Avoid large, multi-stage functions. Even if these are well-commented, instead, use multiple
short functions with concise explanations above the fun declaration.

• Comments should stand out from code. This means that multi-line comments have a leading
asterisk on each line, like so:

(* This is a multi -line comment that doesn 't exactly say
* very much in terms of content , but illustrates pretty
* well what we expect to see in your labs!
*)

(* This is a short single -line comment above a function *)
fun add n k = ...



SML Style Guide 15-210 (Spring 2014)

(* What is this I don 't
(* even
*:(*)

• Delete dead code from submissions. Don’t leave commented-out code in files you hand in,
and don’t leave in code that can never possibly be reached. Always take a moment to clean up
your code before handing it in.

• Follow the standard! Don’t invent any wacky, neo-modern styles in your 210 homework. TAs
like plain and obvious code, so please be nice to us!

3 Spacing and Indentation

3.1 Case statements

You’ve been taught in 15-150 to use case statements by default. In general, this is a good habit. The
styling of case statements should resemble one of the following:

case expr1
of pattern1 => ...
| pattern2 => ...

case expr1 of
pattern1 => ...

| pattern2 => ...

Spacing is very important. Always include a space before and after | and =>. Be mindful to avoid
excessive indentation. In some cases (heh, heh) there may be other stylings that work better, but
going with one of the plain, uncreative styles above is always a right choice.

3.2 Pattern-matching statements

When a function has few arguments and on the top level, there aren’t too many cases to consider,
instead of doing:

fun f data =
case data

of CTOR1 x => ...
| CTOR2 x => ...
| CTOR3 => ...

2



SML Style Guide 15-210 (Spring 2014)

You can do:

fun f (CTOR1 x) = ...
| f (CTOR2 x) = ...
| f CTOR3 = ...

3.3 Nested statements

In SML, expressions can become very deeply nested and because of indentation, you can easily end
up with very long lines. In particular, you may find yourself running into our 80-character line limit
and then having badly formatted code going down the page but smashed up against the right side of
the page (screen?).

Because of this, a good general strategy is to prefer adding newlines over making lines longer, and
especially to prefer adding newlines earlier in your expressions. This way, you would not need to
format the deeper-nested parts of your expressions.

For example, you may find yourself writing something like this:

let
val enormousValueName = case niceDescriptiveName of

Foo => (case otherDescriptiveName of
A blarg => let

val x = n+3
in

...
end

| B d => let
val y = Seq.map

doStuff
blarg

in
...

end)
| Bar => let

...
in

...
end

in
...

end

3



SML Style Guide 15-210 (Spring 2014)

Instead, this can be transformed into the much nicer:

let
val enormousValueName =

case niceDescriptiveName of
Foo =>

(case otherDescriptiveName of
A blarg => let

val x = n+3
in

...
end

| B d => let
val y = Seq.map doStuff blarg

in
...

end)
| Bar => let

...
in

...
end

in
...

end

4 Conditionals

Yes, you can and should use if statements. This is a good idea when you are evaluating a strictly
boolean expression. For example, instead of:

case length s
of 0 => ...
| _ => ...

case boolvar
of true => ...
| false => ...

It would look so much better if you did (respectively):

if length s = 0
then ...
else ...

if boolvar
then ...
else ...

4



SML Style Guide 15-210 (Spring 2014)

A little note: it often helps readability if you put the smaller block of code in the true branch and
the larger in the false branch (as above). Also, a boolean value can be negated with the SML unary
not operator.

That said, don’t overuse conditionals! Nesting case and if statements makes your code difficult
to read and logically hard to follow. When you really need to, it’s often better to express a multilevel
conditional as a single-level case statement. For example, instead of:

if length s1 = 0
then ...
else if length s2 = 0

then ...
else let

val (n1, n2) = (length s1, length s2)
in

...
end

Consider the much more concise alternative:

case (length s1 , length s2) of
(0, _) => ...

| (_, 0) => ...
| (n1 , n2) => ...

5 Functions

5.1 Naming Functions

Use more fun declarations to give your functions a name binding for clarity and reuse. fn (anony-
mous functions) should only be used for short, self-explanatory functions. Instead of the oddly-shaped

val t = reduce (fn (x,y) =>
let

...
in

...
end)

base
(map (fn x =>

let
...

in
...

end)
s)

5



SML Style Guide 15-210 (Spring 2014)

Move your functions out of the val t line:

fun combine (x, y) =
...

fun convert x =
...

val t = reduce combine base (map convert s)

5.2 Curried Functions

Most library functions are curried. This means you can easily make some useful helper functions by
being slightly clever. For example, observe that some of the functions below are all partially applied.

fun f (S : 'a option seq seq) =
let

val get = nth S
val copyScan = scan (fn (a, NONE) => a

| (_, b) => b) NONE
val (s1 ', r1) = copyScan (get 2)
...

in
...

end

5.3 Making Code Concise

If you can make your code more concise, please do so. Avoid the following practices:

val a = Seq.reduce (fn (x,y) => x + y) 0 myInts
val b = Seq.map (fn x => someFunc x) mySeq
val c = if x > y then x else y
val d = case myOption of SOME(x) => x | _ => raise Impossible
val e = if expr then false else true

Because the following is much more clear and concise!

val a = Seq.reduce (op+) 0 myInts (* Good trick to remember! *)
val b = Seq.map someFunc mySeq (* No need for the anon *)
val c = Int.max (x,y) (* Reinventing the wheel *)
val d = valOf myOption (* Existing functions *)
val e = not expr (* Unary negation op *)

6



SML Style Guide 15-210 (Spring 2014)

Furthermore, it is much easier to read a block of val declarations if they are separated by newlines
like this:

val a = Seq.reduce (op+) 0 myInts

val b = Seq.map someFunc mySeq

val c = Int.max (x,y)

val d = valOf myOption

val e = not expr

Also, a, b, c, d, and e are not very good variable names. Neither are s, s’, s”, s”’ and s””. One or
two “primes” are OK; if you find yourself typing s””, it’s time to use a better naming scheme. Better
variable names could be:

val sum = Seq.reduce (op+) 0 myInts
val someFunced = Seq.map someFunc mySeq
val bigger = Int.max (x,y)
val foo = valOf myFooOption
val isntBar = not isBar

Or whatever makes sense in the context of the surrounding program.

Lastly, if you have comments between lines in your function, you should still add new lines to separate
the comments from the previous line of code. So this:

(* ... *)
val x = ...
(* ... *)
val y = ...
(* ... *)
val z = ...

Should become:

(* ... *)
val x = ...

(* ... *)
val y = ...

(* ... *)
val z = ...

7



SML Style Guide 15-210 (Spring 2014)

6 Further Help

That’s all for now. Again, this is not an exhaustive style guide; just try to internalize as many of these
practices as you can. As always, ask if you have questions, or come to office hours with your code if
you’d like suggestions on how to clean it up.

8


	Preface
	General Guidelines
	Spacing and Indentation
	Case statements
	Pattern-matching statements
	Nested statements

	Conditionals
	Functions
	Naming Functions
	Curried Functions
	Making Code Concise

	Further Help

