Syntax and Costs for Sequences, Sets and Tables
Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014)

January 13", 2014

1 Pseudocode Syntax

The pseudocode we use in the class will use the following notation for operations on sequences, sets
and tables. In the translations e, ey, e, represent expressions, and p, p1, Py, k, k1, ko represent patterns.
The syntax described here is not meant to be complete, but hopefully sufficient to figure out any
missing rules. Warning: Since we have been refining the notation as we go, this notation might not
be completely consistent across the lectures.

1.1 Sequences

S; nth S i
|S length(S)
() empty()
(v) singleton(v)
(i,...,7) tabulate (fnk=i+k) (j—i+1)
(e:peSs) map (fnp=>e) S
(e:i€(0,...,n—1)) tabulate (fni=e) n
(peSle) filter (fnp=e) S
(e;:peSley) map (fnp =e;) (filter (fnp=e,) S)
(e:p1 €S1,pr €Sy) flatten(map (fnp; =>map (fnp, =e) Sy) S;)
(e1:p1 €S1,p2 €Syl ey) flatten(map (fnp; = (e;:py€Syley)) Sp)
Ze reduce add 0 (map (fnp=e) S)
pES
Ze reduce add 0 (map (fni=>e) (k,...,n))
i=k
argmax(e) argmax compare (map (fnp=e) S)

DES

The meaning of add, 0, and compare in the reduce and argmax will depend on the type. The).
can be replaced with min, max, U and N with the presumed meanings. The function argmax f S
: (a x a — order) — (a seq) — int returns the index in S which has the maximum value with
respect to the order defined by the function f. argmin s e can be defined by reversing the order of
compare.

Syntax and Costs for Sequences, Sets and Tables 15-210 (Spring 2014)

1.2 Sets
S| size(S)
{} empty
{v} singleton(v)
{fveS|e} filter (fnv=e) S
S] USZ union(Sl,Sz)
S1NS, intersection(S;,S,)
S1\ S, different(S;,S,)
Ze reduce add O (Table.tabulate (fnk=e¢) S)
kes

1.3 Tables
|T| size(T)
{} empty()
{k — v} singleton(k,v)
{fe:veT} map (fnv=e) T
{k—e:(k—v)eT} mapk (fn(k,v)=e) T
{fk—e:keS} tabulate (fnk=¢€) S
{veT|e} filter (fnv=e) T
{(k—v)eT]|e} filterk (fn(k,v)=e) T
{er:veT|e} map (fnv=e;) (filter (fnv=e,) T)
{k:(k—_)eT} domain(T)
fvi(L—v)eT} range(T)
TuT, merge (fn (vy,vo) = vy) (T1,T2)
TNS extract(T,S)
T\S erase(T,S)
Ze reduce add 0 (map (fnv=-e) T)
veT

e reduce add 0 (mapk (fn(k,v)=>e) T)

(k—v)eT
argmax(e) argmax max (mapk (fn(k,v)=>e) T)
(k—v)eT

Syntax and Costs for Sequences, Sets and Tables

15-210 (Spring 2014)

2 Function Costs

ArraySequence Work Span
length(T)
singleton(v) 1 1
nthSi
empty()
n—1 1
tabulate f n > IWF(©) maxS(f (i)
i=0 i=0
map f § ;W(f(e)) max S(f (¢))
min(Siah=t min(15, 8,1
map2 f 1 S, Z W(f (S1i,S2:)) max S(f(Sy;,S2))
i=0 B
filter f S > W) log |S| + maxS(f(s))
= seS
reduce f b S @) (lSl + Z W(f(x,_y))) log|S| max S(f(x,y))
F(x.y)E0.(£,b,5) fx,y)€0,(£,b,5)
scan f b S 0 (|S| + . W(f(x,y))) log|s| ~ max S(f(x,y))
F(x.))E0L(f,b,S) f(x,y)e0(f,b,S)
ISI-1 IS|-1
iter f by S 0 (>, W(f(bi,si))) D S(F(b;,5))
i=0 i=0
Is|—1 Is|—1
iterh f by S 0 (>, W(f(bi,si))) D S(F(b,5))
i=0 i=0
showt S
showti S f 151 1
showl S |S| 1
hidet(NODE(L,R)) IL| + |R| 1
hidel(CONS(x,xs)) |S| 1
hidel(NIL)
hidet(ELT e) 1 1
hidet(EMPTY)

Syntax and Costs for Sequences, Sets and Tables 15-210 (Spring 2014)

ArraySequence Work Span
append(S;, ;) 1S1] + 1S5 1
drop(S,n) |S| —n 1
take(S,n)
drop(S,n) n 1
subseq S (s,n)
|b—al
rake S (a, b,s) 1
s
splitMid(s, i) S| 1
flatten S S| +Z le] log|S|
e€S
injectIS |I]+|S| 1
partitionI S [I|+ S| 1
argmax f S |S| log|S|
merge f S; Sp 1S11 + 152l log(|S:] + 1S21)
sort f S |S|log|S| log? S|
collate f (S1,S2) [S1|+1S2| log(min(|S:],[S2[))
collect f S |S|log|S| log? S|
fromList(S)
0 S S
%S) S| S|
toString f S D> W (f(e) D 8(f(e)
ecS e€S
fields f S
tokens f S 5] log]

For reduce, O,(f,i,S) represents the set of applications of f as defined in the documentation. For
scan, O,(f,1,S) represents the applications of f defined by the implementation of scan in the lecture
notes. For iter and iterh, b; = f(b;_1,S;_1). For showti, argmax, merge, sort, collate,
collect, fields, and tokens the given costs assume that the work and span of the application of
f is constant.

Syntax and Costs for Sequences, Sets and Tables

15-210 (Spring 2014)

TreeSequence Work Span

nthSi logn logn

tabulate f n - —— logn+mréoxs(f(i))
1=

map f S —-—- log|S|+ rgeanS(f(S))
showt S log|S| log|S|
hidet(NODE(L,R)) log(|L| + |R]) log(|L| + |R])
append(Sy, S;) log(|S1] + 1S21) log(|S1] +1S21)
drop(S,n) log(|S| —n) log(|S| —n)
zil;:isq’ g)(s, n) logn logn
partitionI S Zp log(|I] +1S1)
pEeS
inject IS [I|1g(]I| +1S1]) 1g2 |1] +1og|S]|
merge f S Sy min(|Sy], [S2[) - 18(1S1] + 1S21) 1g(1S1] +1S2D)
sort f S |S|log|S| log?|S|
collect f S |S|log|S| log? S|

For singleton, length, filter, reduce, scan, sort and collect the costs are the same as in
ArraySequence. All — — — entries are the same as ArraySequence. For merge, sort, and collect
the costs assume that the work and span of the application of f is constant.

Single Threaded ArraySequence Span
nthSi

update (i,v) S o(1)
injectIS 1
fromSeq S

toSeq S o)

Syntax and Costs for Sequences, Sets and Tables 15-210 (Spring 2014)

Tree Sets and Tables Work Span

size(T)
singleton(k,v)

0o(1) 0(1)

filter f T O((k%;TW(f(v))) o(1g|T| + max S(f(v)))

map f T O(Z W(f(v))) O(max S(f(v)))
(K)eT (k)T

tabulate f S O(Z W(f(k))) o(rEans(f(k)))

keS <

find T k

insert f (k,v) T 0o(lg|T]) o(1g|T|)

delete k T

merge f (T1,T,)

extract (T,S) 0 (mlg(”Tm)) O(lg(n+m))

erase (T,S)

domain T

range T o(IT|) o(g|T|)

toSeq T

collect S

fromSeq S o(Is]1gls) 0(lg*|s)

union (5;,S,)
intersection (S;,S,) O(mlg(“Tm)) O(lg(n+m))
difference (S1,S,)

where n = max(|T;|, |T»|) and m = min(|T;|,|T,|). For reduce you can assume the cost is the same
as Seq.reduce f init (range(T)). In particular Seq.reduce defines a balanced tree over the
sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds
assume the merging function has constant work.

Syntax and Costs for Sequences, Sets and Tables 15-210 (Spring 2014)

TreeTables
function | type | Work | Span
size(T) T—N 1 1
singleton(k,v) |Kxa—T,
filter f T (a >B)—>T,—>T, Z W) | lg|TI+ max S(F(v))
(K)eT (kv)eT
map f T (@—p)— T, —Tp DT W) | max S(F()
(k,v)ET
(k,v)eT
tabulate f T | (K—a)—>S—T, PNUA) maxS(f (k)
€
keS
find T k T, — K — (K opt)
insert f (k,v) T | (axa—a)—>(Kxa)—T, —> T, 1g|T| 1Ig|T|
delete k T K—T,—T,
merge f (Tl’ TZ) (a xa— Ct) - (T(x X Ta) - Toc
extract (T,S) Ty XS —T, mlg(”Tm) lg(n+ m)
erase (T,S) T, *xS—T,
domain T T,—S
range T T, — (a Seq) |T| 1g|T|
toSeq T T, — ((Kx a) Seq)
collect S (KX a) Seq = Tygeq 5
fromSeq S (K x a) Seq— T, IS1g] 1g1s]
TreeSets

function | type | Work | Span

size(S) S—N 1 1

singleton(k) K—S

filter f S (K—B)—S—S| > W(f(k) Ig S|+ maxS(f (k)

€
kes

find S k S—-=K—DB

insert k S K—>S—-S§S 1g]S| 1g|S]

delete k S K—-S—S

fromSeq S | K Seq—S | |S|log|S]| | 1g2 S|

union (S;,S;) SXxS—S

intersection(S;,S;) [SxS—S mlg(”Tm) lg(n+ m)

difference(S;,S,) SXS—S

Syntax and Costs for Sequences, Sets and Tables 15-210 (Spring 2014)

Where n = max(|T;|, |T,|) and m = min(|T;|, |T|). For reduce you can assume the cost is the same
as Seq.reduce f init (range(T)).In particular Seq.reduce defines a balanced tree over the
sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds
assume the merging function has constant work.

3 Further Help

As always, don’t hesitate to ask a TA for help if you're unclear about anything!

	Pseudocode Syntax
	Sequences
	Sets
	Tables

	Function Costs
	Further Help

