Syntax and Costs for Sequences, Sets and Tables Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014) January 13th, 2014 ## 1 Pseudocode Syntax The pseudocode we use in the class will use the following notation for operations on sequences, sets and tables. In the translations e, e_1, e_2 represent expressions, and p, p_1, p_2, k, k_1, k_2 represent patterns. The syntax described here is not meant to be complete, but hopefully sufficient to figure out any missing rules. Warning: Since we have been refining the notation as we go, this notation might not be completely consistent across the lectures. ### 1.1 Sequences ``` nth S i S_i |S| length(S) () empty() \langle \nu \rangle singleton(v) \langle i, \ldots, j \rangle tabulate (fn k \Rightarrow i + k) (j - i + 1) \langle e : p \in S \rangle map (fn p \Rightarrow e) S \langle e : i \in \langle 0, \dots, n-1 \rangle \rangle tabulate (\operatorname{fn} i \Rightarrow e) n \langle p \in S \mid e \rangle filter (fn p \Rightarrow e) S \langle e_1 : p \in S \mid e_2 \rangle \langle e : p_1 \in S_1, p_2 \in S_2 \rangle map (\operatorname{fn} p \Rightarrow e_1) (filter (\operatorname{fn} p \Rightarrow e_2) S) \texttt{flatten}(\texttt{map } (\texttt{fn} \ p_1 \Rightarrow \texttt{map } (\texttt{fn} \ p_2 \Rightarrow e) \ S_2) \ S_1) \langle e_1 : p_1 \in S_1, p_2 \in S_2 \mid e_2 \rangle flatten(map (fn p_1 \Rightarrow \langle e_1 : p_2 \in S_2 \mid e_2 \rangle) S_1) reduce add 0 (map (fn p \Rightarrow e) S) reduce add 0 (map (fn i \Rightarrow e) \langle k, ..., n \rangle) argmax(e) argmax compare (map (fn p \Rightarrow e) S) ``` The meaning of add, 0, and compare in the reduce and argmax will depend on the type. The \sum can be replaced with min, max, \cup and \cap with the presumed meanings. The function argmax f S: $(\alpha \times \alpha \to \text{order}) \to (\alpha \text{ seq}) \to \text{int}$ returns the index in S which has the maximum value with respect to the order defined by the function f. argmin $_{p \in S} e$ can be defined by reversing the order of compare. #### **1.2** Sets ``` |S| \qquad \text{size}(S) \\ \{\} \qquad \text{empty} \\ \{\nu\} \qquad \text{singleton}(\nu) \\ \{\nu \in S \mid e\} \qquad \text{filter } (\mathbf{fn} \ \nu \Rightarrow e) \ S \\ S_1 \cup S_2 \qquad \text{union}(S_1, S_2) \\ S_1 \cap S_2 \qquad \text{intersection}(S_1, S_2) \\ S_1 \setminus S_2 \qquad \text{different}(S_1, S_2) \\ \sum_{k \in S} e \qquad \text{reduce add } 0 \ (\text{Table.tabulate } (\mathbf{fn} \ k \Rightarrow e) \ S) ``` #### 1.3 Tables ``` |T| size(T) {} empty() \{k \mapsto v\} singleton(k, v) \{e: v \in T\} map (\operatorname{fn} v \Rightarrow e) T \{k \mapsto e : (k \mapsto v) \in T\} \mod(\mathbf{fn}(k, v) \Rightarrow e) T \{k \mapsto e : k \in S\} tabulate (\operatorname{fn} k \Rightarrow e) S \{v \in T \mid e\} filter (fn v \Rightarrow e) T \{(k \mapsto v) \in T \mid e\} filterk (\operatorname{fn}(k, v) \Rightarrow e) T map (\mathbf{fn} \ v \Rightarrow e_1) (filter (\mathbf{fn} \ v \Rightarrow e_2) T) \{e_1 : v \in T \mid e_2\} \{k:(k\mapsto_)\in T\} domain(T) \{v: (_ \mapsto v) \in T\} range(T) T_1 \cup T_2 merge (fn(v_1, v_2) \Rightarrow v_2) (T_1, T_2) T \cap S extract(T,S) T \setminus S erase(T,S) reduce add 0 (map (\mathbf{fn} \ v \Rightarrow e) T) reduce add 0 (mapk (\operatorname{fn}(k, v) \Rightarrow e) T) argmax(e) argmax max (mapk (fn(k, v) \Rightarrow e) T) (k \mapsto v) \in T ``` # 2 Function Costs | ArraySequence | Work | Span | |---|--|---| | $\begin{array}{c} \texttt{length}(T) \\ \texttt{singleton}(\nu) \\ \texttt{nth } S \ i \\ \texttt{empty}() \end{array}$ | 1 | 1 | | $\mathtt{tabulate}fn$ | $\sum_{i=0}^{n-1} W(f(i))$ | $\max_{i=0}^{n-1} S(f(i))$ | | $\operatorname{map} f S$ | $\sum_{e \in S} W(f(e))$ | $\max_{e \in S} S(f(e))$ | | $\mathrm{map2}fS_1S_2$ | $\sum_{i=0}^{\min(S_1 , S_2)-1} W(f(S_{1i},S_{2i}))$ | $\max_{i=0}^{\min(S_1 , S_2)-1} S(f(S_{1i},S_{2i}))$ | | filter f S | $\sum_{s \in S} W(f(s))$ | $\log S + \max_{s \in S} S(f(s))$ | | reduce f b S | $O\left(S + \sum_{f(x,y) \in \mathcal{O}_r(f,b,S)} W(f(x,y))\right)$ | $\log S \max_{f(x,y) \in \mathcal{O}_r(f,b,S)} S(f(x,y))$ | | $\operatorname{scan} f b S$ | $O\left(S + \sum_{f(x,y) \in \mathcal{O}_s(f,b,S)} W(f(x,y))\right)$ | $\log S \max_{f(x,y) \in \mathcal{O}_s(f,b,S)} S(f(x,y))$ | | iter f b_0 S | $O\left(\sum_{i=0}^{ S -1}W(f(b_i,S_i))\right)$ | $\sum_{i=0}^{ S -1} S(f(b_i,S_i))$ | | $iterh f b_0 S$ | $O\left(\sum_{i=0}^{ S -1}W(f(b_i,S_i))\right)$ | $\sum_{i=0}^{ S -1} S(f(b_i,S_i))$ | | $\begin{array}{c} \texttt{showt}S\\ \texttt{showti}Sf \end{array}$ | $ \mathcal{S} $ | 1 | | $\mathtt{showl}\ S$ | S | 1 | | hidet(NODE(L,R)) | L + R | 1 | | hidel(CONS(x, xs)) | S | 1 | | hidel(NIL) hidet(ELT e) hidet(EMPTY) | 1 | 1 | | ArraySequence | Work | Span | | |--|----------------------------|---------------------------|--| | ${\tt append}(S_1,S_2)$ | $ S_1 + S_2 $ | 1 | | | drop(S,n) | S - n | 1 | | | $\frac{\texttt{take}(S,n)}{\texttt{drop}(S,n)}$ $\texttt{subseq } S \ (s,n)$ | n | 1 | | | rake S(a,b,s) | $\frac{ b-a }{s}$ | 1 | | | ${\tt splitMid}(S,i)$ | S | 1 | | | flatten S | $ S + \sum_{e \in S} e $ | $\log S $ | | | inject I S | I + S | 1 | | | partition I S | I + S | 1 | | | $\operatorname{argmax} f S$ | S | $\log S $ | | | $\mathtt{merge}fS_1S_2$ | $ S_1 + S_2 $ | $\log(S_1 + S_2)$ | | | sort f S | $ S \log S $ | $\log^2 S $ | | | collate $f(S_1, S_2)$ | $ S_1 + S_2 $ | $\log(\min(S_1 , S_2))$ | | | $collectf\;S$ | $ S \log S $ | $\log^2 S $ | | | $\frac{fromList(S)}{\%(S)}$ | S | S | | | toString f S | $\sum_{e \in S} W(f(e))$ | $\sum_{e \in S} S(f(e))$ | | | $\begin{array}{c} \texttt{fields}fS\\ \texttt{tokens}fS \end{array}$ | S | $\log S $ | | | | | | | For reduce, $\mathcal{O}_r(f,i,S)$ represents the set of applications of f as defined in the documentation. For scan, $\mathcal{O}_s(f,i,S)$ represents the applications of f defined by the implementation of scan in the lecture notes. For iter and iterh, $b_i = f(b_{i-1},S_{i-1})$. For showti, argmax, merge, sort, collate, collect, fields, and tokens the given costs assume that the work and span of the application of f is constant. | TreeSequence | Work | Span | |--------------------------------------|---|------------------------------------| | nth S i | log n | log n | | tabulate f n | | $\log n + \max_{i=0}^{n} S(f(i))$ | | map f S | | $\log S + \max_{s \in S} S(f(s))$ | | $\mathtt{showt}\; S$ | $\log S $ | $\log S $ | | hidet(NODE(L,R)) | $\log(L + R)$ | $\log(L + R)$ | | $\overline{\text{append}(S_1, S_2)}$ | $\log(S_1 + S_2)$ | $\log(S_1 + S_2)$ | | drop(S,n) | $\log(S -n)$ | $\log(S -n)$ | | $\frac{take(S,n)}{subseqS(s,n)}$ | $\log n$ | log n | | partition I S | $\sum_{p \in S} p$ | $\log(I + S)$ | | | $ I \lg(I + S)$ | $\lg^2 I + \log S $ | | $merge f S_1 S_2$ | $\min(S_1 , S_2) \cdot \lg(S_1 + S_2)$ | $\lg(S_1 + S_2)$ | | sort f S | $ S \log S $ | $\log^2 S $ | | collect f S | $ S \log S $ | $\log^2 S $ | For singleton, length, filter, reduce, scan, sort and collect the costs are the same as in ArraySequence. All -- entries are the same as ArraySequence. For merge, sort, and collect the costs assume that the work and span of the application of f is constant. | Single Threaded ArraySequence | Work | Span | |--|--------|------| | $\begin{array}{c} \text{nth } S \ i \\ \text{update} \ (i, v) \ S \end{array}$ | 0(1) | O(1) | | ${\texttt{inject}IS}$ | I | 1 | | $\begin{array}{c} \\ \text{fromSeq} \ S \\ \text{toSeq} \ S \end{array}$ | O(S) | O(1) | | Tree Sets and Tables | Work | Span | |---|--|--| | size(T) $singleton(k, v)$ | O(1) | O(1) | | $\mathtt{filter}fT$ | $O\left(\sum_{(k,\nu)\in T}W(f(\nu))\right)$ | $O\left(\lg T + \max_{(k,\nu)\in T} S(f(\nu))\right)$ | | map f T | $O\left(\sum_{(k,\nu)\in T}W(f(\nu))\right)$ | $O\left(\max_{(k,\nu)\in T} S(f(\nu))\right)$ | | $\verb"tabulate"fS$ | $O\left(\sum_{k\in S}W(f(k))\right)$ | $O\left(\max_{k\in\mathcal{S}}S(f(k))\right)$ | | find $T k$
insert $f(k, v) T$
delete $k T$ | $O(\lg T)$ | $O(\lg T)$ | | merge $f(T_1, T_2)$
extract (T, S)
erase (T, S) | $O\left(m\lg(\frac{n+m}{m})\right)$ | $O(\lg(n+m))$ | | $\begin{array}{c} \text{domain } T \\ \text{range } T \\ \text{toSeq } T \end{array}$ | O(T) | $O(\lg T)$ | | collect S
fromSeq S | $O(S \lg S)$ | $O(\lg^2 S)$ | | union (S_1, S_2)
intersection (S_1, S_2)
difference (S_1, S_2) | $O\left(m\lg(\frac{n+m}{m})\right)$ | $O(\lg(n+m))$ | where $n = \max(|T_1|, |T_2|)$ and $m = \min(|T_1|, |T_2|)$. For reduce you can assume the cost is the same as Seq.reduce f init (range(T)). In particular Seq.reduce defines a balanced tree over the sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds assume the merging function has constant work. | TreeTables | | | | |--|---|---|--| | function | type | Work | Span | | size(T) $singleton(k, v)$ | $\left \begin{array}{l} \mathbb{T} \to \mathbb{N} \\ \mathbb{K} \times \alpha \to \mathbb{T}_{\alpha} \end{array}\right $ | 1 | 1 | | $\mathtt{filter}fT$ | $\left (\alpha \to \mathbb{B}) \to \mathbb{T}_{\alpha} \to \mathbb{T}_{\alpha} \right $ | $\bigg \sum_{(k,\nu) \in T} W(f(\nu))$ | $ \lg T + \max_{(k,\nu) \in T} S(f(\nu)) $ | | $\mathtt{map}fT$ | $\left (\alpha \to \beta) \to \mathbb{T}_{\alpha} \to \mathbb{T}_{\beta} \right $ | $\bigg \sum_{(k,\nu) \in T} W(f(\nu))$ | $\max_{(k,\nu)\in T} S(f(\nu))$ | | $\mathtt{tabulate}fT$ | $\left (\mathbb{K} \to \alpha) \to \mathbb{S} \to \mathbb{T}_{\alpha} \right $ | $ \sum_{k \in S} W(f(k)) $ | $\max_{k \in S} S(f(k))$ | | find T k insert f (k, v) T delete k T | $ \begin{vmatrix} \mathbb{T}_{\alpha} \to \mathbb{K} \to (\mathbb{K} \text{ opt}) \\ (\alpha \times \alpha \to \alpha) \to (\mathbb{K} \times \alpha) \to \mathbb{T}_{\alpha} \to \mathbb{T}_{\alpha} \\ \mathbb{K} \to \mathbb{T}_{\alpha} \to \mathbb{T}_{\alpha} \end{vmatrix} $ | lg <i>T</i> | $\lg T $ | | merge $f(T_1, T_2)$
extract (T, S)
erase (T, S) | $ \begin{vmatrix} (\alpha \times \alpha \to \alpha) \to (\mathbb{T}_{\alpha} \times \mathbb{T}_{\alpha}) \to \mathbb{T}_{\alpha} \\ \mathbb{T}_{\alpha} \times \mathbb{S} \to \mathbb{T}_{\alpha} \\ \mathbb{T}_{\alpha} \times \mathbb{S} \to \mathbb{T}_{\alpha} \end{vmatrix} $ | $m \lg(\frac{n+m}{m})$ | $\lg(n+m)$ | | $\begin{array}{c} \operatorname{domain} T \\ \operatorname{range} T \\ \operatorname{toSeq} T \end{array}$ | $ \left \begin{array}{l} \mathbb{T}_{\alpha} \to \mathbb{S} \\ \mathbb{T}_{\alpha} \to (\alpha \ \mathrm{Seq}) \\ \mathbb{T}_{\alpha} \to ((\mathbb{K} \times \alpha) \ \mathrm{Seq}) \end{array} \right $ | T | $\lg T $ | | $\begin{array}{c} \mathtt{collect}S\\ \mathtt{fromSeq}S \end{array}$ | | | $\lg^2 S $ | | TreeSets | | | | |--|--|---------------------------------|---| | function | type | Work | Span | | size(S)
singleton(k) | $ \begin{vmatrix} \mathbb{S} \to \mathbb{N} \\ \mathbb{K} \to \mathbb{S} \end{vmatrix} $ | 1 | 1 | | $\mathtt{filter}fS$ | $\bigg \left(\mathbb{K} \to \mathbb{B} \right) \to \mathbb{S} \to \mathbb{S}$ | $\bigg \sum_{k \in S} W(f(k))$ | $\left \lg S + \max_{k \in S} S(f(k)) \right $ | | $\begin{array}{l} \texttt{find} \ S \ k \\ \texttt{insert} \ k \ S \\ \texttt{delete} \ k \ S \end{array}$ | $ \begin{array}{c} \mathbb{S} \to \mathbb{K} \to \mathbb{B} \\ \mathbb{K} \to \mathbb{S} \to \mathbb{S} \\ \mathbb{K} \to \mathbb{S} \to \mathbb{S} \end{array} $ | lg S | lg S | | fromSeq S | $\mid \mathbb{K} \operatorname{Seq} o \mathbb{S}$ | S log S | $ lg^2 S $ | | $\begin{array}{c} \text{union}(S_1,S_2)\\ \text{intersection}(S_1,S_2)\\ \text{difference}(S_1,S_2) \end{array}$ | $ \begin{array}{c} \mathbb{S} \times \mathbb{S} \to \mathbb{S} \\ \mathbb{S} \times \mathbb{S} \to \mathbb{S} \\ \mathbb{S} \times \mathbb{S} \to \mathbb{S} \end{array} $ | $m \lg(\frac{n+m}{m})$ | $\lg(n+m)$ | Where $n = \max(|T_1|, |T_2|)$ and $m = \min(|T_1|, |T_2|)$. For reduce you can assume the cost is the same as Seq.reduce f init (range(T)). In particular Seq.reduce defines a balanced tree over the sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds assume the merging function has constant work. ## 3 Further Help As always, don't hesitate to ask a TA for help if you're unclear about anything!