
SML/NJ CM Usage

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014)

January 13th, 2014

1 The make function

Managing code that lives in several SML files–loading the files in the correct order and avoiding
shadowing issues as the program grows–becomes irritating quickly. In order to avoid tedious and
error-prone sequences of use commands, the authors of SML/NJ included a program that will load
and compile the source code for programs from a text file that lists the files which contain it.

The structure CM has a function:

val make : string -> unit

This function takes the name of the listing text file, a file usually named sources.cm.

2 Sources

The file sources.cm usually has the following form:

Group is
$/basis.sml
file1.sml
file2.sml
file3.sml

Note that CM will not run if any of the files specified are empty, or contain no module definitions. So
you may occasionally need to add files to sources.cm yourself, or uncomment lines that we include.

Also note that while CM does compile all the code found in the files specified, it only introduces
bindings into the top-level environment for values, types, and exceptions defined within modules. All
other bindings are discarded.

3 Using CM in the REPL

Once you have sources.cm set up, loading your code using the read-eval-print-loop (REPL) is simple.
Launch SML in the directory containing your code, and call CM.make "sources.cm":

$ smlnj
Standard ML of New Jersey v110.xx

SML/NJ CM Usage 15-210 (Spring 2014)

- CM.make "sources.cm";
[autoloading]
[library $smlnj/cm/cm.cm is stable]
[library $smlnj/internal/cm-sig-lib.cm is stable]
...
...
[New bindings added.]
val it = true : bool
-

That last “-” prompt, is an indication that the bindings are ready. You may now test your code using
the Tester structure we’ve provided to you. Call CM.make "sources.cm" again when you’ve
changed something in your code and want to recompile.

4 Why use CM?

The compilation manager offers a better interface to the command line. There is less typing and less
of an issue with name-shadowing between iterations of your code. In short, when using CM, your
development cycle will look something like:

1. Edit your sources files.

2. At the REPL, type

CM.make "sources.cm";

or if you’re in smlnj (which is simply a wrapper on top of sml with rlwrap, which enables
you to view command history with the arrow keys), just use the UP and DOWN arrows.

3. Fix errors and debug.

4. If done, celebrate! Otherwise, go back to step 1.

Calling CM.make will make a hidden subdirectory in the current working directory called .cm. This
is populated with metadata needed to work out compilation dependencies, but can become quite
large. Since it’s entirely generated, the .cm directory can be safely deleted between work sessions.

5 Further Help

An extremely detailed discussion of CM and its implementation in SML/NJ can be found at:

http://www.smlnj.org/doc/CM/new.pdf

As always, don’t hesitate to ask a TA for help if you’re unclear about anything!

2

http://www.smlnj.org/doc/CM/new.pdf

	The make function
	Sources
	Using CM in the REPL
	Why use CM?
	Further Help

