15-210: Parallelism in the Real World

+ Types of paralellism

* Parallel Thinking

* Nested Parallelism

« Examples (Cilk, OpenMP, Java Fork/Join)
« Concurrency

15-853 Pagel

Cray-1 (1976): the world's most
expensive love seat

15-210 2

Data Center: Hundred's of
thousands of computers

Since 2005: Multicore computers

AMD Opteron (sixteen-core) Model 6274
b
;‘:)%‘(D,‘“} [(1 customer review)

List Price: $693-00
price: $599.99 prime
You Save: $93.01 (13%)
Only 1 left in stock (more on the way).
Ships from and sold by Amazon.com. Gift-wrap available.
Want it delivered Monday, November 5? Order it in the next 14 hours an d 37 minutes
Delivery may be impacted by Hurricane Sandy. Proceed to checkout to see estimated
43 new from $599.99

15-210

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

res—
SteCore Core 7, l
2,600,000,000 4 s om Xeon 7400, L 10, o0 Wstmro X
ual-Core Harium 20 i law;?ﬂﬂfa?
1,000,000,000 1 romme iy
a2 in 588 g Ay
Bowiow coti RN
wmmze /8620
100,000,000 -
€ 10,000,000 oo douing ooy
o wo years
o
=
Lo
w
2 1,000,000
C
£
100,000
10,000
2,300-
l T T T 3
1971 1980 1990 2000 2011
15-210 5

Date of introduction

15-210

Moore's Law and Performance

10,000,000
/
Dual-Core Itanium 2] /
1,000,000 —e e

Intel

2 Intel
100,000
10,000
1,000
100

e
10

A
‘/ T .o
! /
. -
",. Z @ Clock specc (MHz)
LX) .. aPower (W)
@ Perf/Clock (ILP)
0 I | I

1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelismiis here.... And Growing!

re:

Number of Co

|corez Quad (4)]

v

2006 2007 2008 2009 2010 2015

© Intel

15-210 Andrew Chien, 2008

64 core blade servers ($6K)
(shared memory)

AMD Opteron (sixteen-core) Model 6274
by AMD
Fodotohft [(Laustomer review)
List Price: $663-00
Price: $599.99 +rime

You Save: $93.01 (13%) x 4 =

Only 1 left in stock (more on the way).

Ships from and sold by Amazon.com. Gift-wrap available.

Want it delivered Monday, November 5? Order it in the next 14 hours and 37 minutes
Delivery may be impacted by Hurricane Sandy. Proceed to checkout to see estimated
43 new from $599.99

1024 “cuda” cores

amazon.com Hello. Sign in to get personalized recommendations. New customer? Start here.

Your Amazon.com | /i Today's Deals | Gifts & Wish Lists | Gift Cards
- Electronics.
All Electronics Brands Best Sellers Audio & Home Theater Camera & Photo CarE

3 EVGA GeForce GTX 590 Classified
| 3DVI/Mini-Display Port SLI Ready Lil
V3 03G-P3-1596-AR
. by EVGA

(16 customer reviews) | £1tke) (29)

price: $924.56

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

5 new from $749.99 2 used from $695.00

15-210 9

Samsung Galaxy S IV to feature Exynos 28nm quad-core

processor?

Written by Andre Yoskowitz @ 01 Nov 2012 18:02

It has been a few weeks but there is a
new rumor regarding the upcoming
Samsung Galaxy S IV.

According to reports, Samsung will pack
next year's flagship device with its "Adonis"
Exynos processor, a quad-core ARM 15
beast that uses efficient 28nm tech.

Samsung is supposedly still testing the
application processor, but mass production
is scheduled for the Q1 2013 barring any
delays.

15-210

Samsung Galaxy S IV is now
Official: Octa-Core CPU, 5" Full HD
Display & 13MP Camera

Follow: Phones GT-19500 Samsung Display Samsung Exynos Samsung Galaxy S|V Samsung
Mobile Unpacked 2013

Samsung has just announced the Samsung Galaxy S4
at their Mobile Unpacked Event 2013 Episode 1 in
New York, USA. The Galaxy S4 features a stunning 4.99”
Full HD (1920x 1080) SuperAMOED display. With a 441 ppi
pixel density, your eyes won't be able to distinguish the
pixels, which ensures excellent visual comfort. Even though
the Galaxy S4 has a large display and a massive battery of
2,600 MAh, it's only 7.9mm thick. Samsung's latest
flagship device is PACKED with powerful components, consisting of Samsung's latest
Exynos 5 Octa-Core (5410) CPU based on ARM's big.LITTLE technology with Quad Cortex-

Intel Has a 48-Core Chip for Smartphones

and Tablets

By Wolfgang Gruener OCTOBER 31, 2012 9:20 AM - Source: Computerworld

Intel has developed a prototype of a 48-core processor for smartphones. Before
you ask: No, you can't buy a 48-core smartphone next year.

15-210

Parallel Hardware

Many forms of parallelism
- Supercomputers: large scale, shared memory

- Clusters and data centers: large-scale,
distributed memory

- Multicores: tightly coupled, smaller scale
- GPUs, on chip vector units
- Instruction-level parallelism

Parallelism is important in the real world.

15-210 13

Key Challenge: Software
(How to Write Parallel Code?)

At a high-level, it is a two step process:
- Design a work-efficient, low-span parallel
algorithm
- Implement it on the target hardware
In reality: each system required different code because
programming systems are immature
- Huge effort to generate efficient parallel code.
+ Example: Quicksort in MPT is 1700 lines of code,
and about the same in CUDA
- Implement one parallel algorithm: a whole thesis.

15-210 14

15-210 Approach

Enable parallel thinking by raising abstraction level

I. Parallel thinking: Applicable o many machine models and

programming languages

II. Reason about correctness and efficiency of algorithms

and data structures.

15-210 15

Parallel Thinking

Recognizing true dependences: unteach sequential
programming.

Parallel algorithm-design techniques
- Operations on aggregates: map/reduce/scan
- Divide & conquer, contraction

- Viewing computation as DAG (based on
dependences)

Cost model based on work and span

15-210 16

Quicksort from
Aho-Hopcroft-Ullman (1974)

procedure QUICKSORT(S):
if S contains at most one element then return S
else
begin
choose an element a randomly from S;
let S;, S, and S; be the sequences of
elements in S less than, equal to,
and greater than a, respectively;
return (QUICKSORT(S,) followed by S,
followed by QUICKSORT(S;))

end

15-210 Page 17

Quicksort from Sedgewick (2003)

public void quickSort(int[] a, int left, int right) {
int i = left-1; int j = right;
if (right <= left) return;
while (true) {
while (a[++i] < alright]); 5
while (a[right] < a[--j]) =
if (j==left) break; Alg()rllhms
if (i >= j) break; IN Java
swap(a,i,3); } ,
swap(a, i, right);
quickSort(a, left, i - 1);
quickSort(a, i+l, right); }

ROBERT SEDGEWICK
ot oos remng by Mt Bty

15-210 Page 18

Styles of Parallel Programming

Data parallelism/Bulk Synchronous/SPMD
Nested parallelism : what we covered
Message passing

Futures (other pipelined parallelism)
General Concurrency

15-853 Pagel9

Nested Parallelism

Nested Parallelism =
arbitrary nesting of parallel loops + fork-join

- Assumes ho synchronization among parallel
tasks except at joint points.

- Deterministic if no race conditions

Advantages:
- Good schedulers are known
- Easy to understand, debug, and analyze
- Purely functional, or imperative...either works

15-853 Page20

Nested Parallelism: parallel loops
cilk for (i=0; i < n; i++) Cilk
B[i] = A[i]+1;

Microsoft TPL

Parallel.ForEach(A, x => x+1);

(C# F#)
B={x+12:x in A} Nesl, Parallel Haskell
#pragma omp for ()penAAP
for (i=0; i < n; i++)

B[i] = A[i] + 1;
15-853 Page2l

Nested Parallelism: fork-join

cobegin { Dates back to the 60s. Used in
s1; dialects of Algol, Pascal
S2;}

Java fork-join framework

coinvoke(£l,£2) Microsoft TPL (C# F#)
Parallel.invoke(fl,£2)

#pragma omp sections

{ OpenMP (C++, C, Fortran, ...)
#pragma omp section
S1;
#pragma omp section
S2;
} 15-853 Page22

Nested Parallelism: fork-join

spawn S1;

52; cilk, cilk+
sync;

(expl || exp2) Various functional

languages
plet
x = expl Various dialects of
y = exp2 ML and Lisp
in
exp3
15-853 Page23

Cilk vs. what we've covered

ML: val (a,b) = par(fn () => f(x),
fn () =>g(y)) .

Psuedocode: val (a,b) = (f(x) || g(y)) Fork Join
Cilk: cilk_spawn f(x);

g(y):

cilk_sync;
ML: S = tabulate f(i) n Parallel
Psuedocode: S =<f(i):iin<0,.n-1> loops
Cilk: cilk_for (inti=0;i<n; i++)

S[i] = £(i)

15-853 Page24

Cilk vs. what we've covered

ML: S = tabulate f(i) n

Psuedocode: S =<«f(i):iin<0,.n-1>»>

Cilk: cilk_for (inti=0;i<n; i++)
S[i1 = £(i)

15-853 Page25

Serial Parallel DAGs

Dependence graphs of nested parallel computations are
series parallel

Two tasks are parallel if not reachable from each other.

A data race occurs if two parallel tasks are involved in a

race if they access the same location and at least one
is awrite.

15-853 Page26

Cost Model (General)

Compositional:

Work : total number of operations
- costs are added across parallel calls

Span : depth/critical path of the computation
- Maximum span is taken across forked calls

Parallelism = Work/Span

- Approximately # of processors that can be
effectively used.

15-853 Page27

Combining costs (Nested Parallelism)

Combining for parallel for:
pfor (i=0; i<n; i++)
£(1);

n-1

W (for ..) = Y W, (D) work
i=0

D, (pfor ..) = max.o De,(f0)) span

15-853 28

Why Work and Span Example Cilk

int £ib (int n) {

Simple measures that give us a good sense of if (n<2) return (n);
efficiency (work) and scalability (span). el'set{
int x,y;
Can schedule in O(W/P + D) time on P processors. x = cﬁk_spawn £ib(n-1) ;
This is within a constant factor of optimal. zi?ki::}izfpawn fib (n-2) ;
Goals in designing an algorithm) return (x+y);
1. Work should be about the same as the }

sequential running time. When it matches
asymptotically we say it is work efficient.

2. Parallelism (W/D) should be polynomial.
O(n'?) is probably good enough

15-853 29 15-853 Page30

Example OpenMP. T
Numerical Integration The C code for Approximating PT

Mathematically, we know that:

static long num_steps = 100000;

1

F(x) = 4.0/(1+x2)

a0] 4.0 double step;
PN f o) &7 void main ()
X 0 { inti; double x, pi, sum = 0.0;
\ We can approximate the
integral as a sum of step = 1.0/(double) num_steps;
20 rectangles: 7 x = 0.5 * step;
N for (i=0;i<= num_steps; i++){
E F(x)Ax = TT x+=step;
=0 sum += 4.0/(1.0+x*x);
where each rectangle has }

HE— * .
w0 width Ax and height F(x,) at pi = step ™ sum;
31

15210 the middle of interval i.

The C/openMP code for Approx. PI

#include <omp.h>

static long num_steps = 100000;

void main ()

{ inti; double x, pi, sum = 0.
step = 1.0/(double) num_steps;

double step;

Private clause

|#pragma omp parallel for private(i, x) reduction(+:sum)

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

0; creates data local to
a thread

Reduction used to
manage
dependencies

Example : Java Fork/Join

class Fib extends FJTask {

volatile int result; // serves as arg and result
int n;
Fib(int _n) { n = _n; }

public void run() {
if (n <= 1) result = n;
else if (n <= sequentialThreshold) number = seqgFib(n);
else {
Fib fl1 = new Fib(n - 1);
Fib f2 = new Fib(n - 2);
coInvoke(fl, £2);
result = fl.result + f2.result;

15-853 Page34

How do the problems do on
a modern multicore

mT1/T32

Tseq/T32

35

Parallelism vs. Concurrency

Parallelism: using multiple processors/cores
running at the same time. Property of the machine
Concurrency: non-determinacy due to interleaving
threads. Property of the application.

Concurrency
sequential concurrent
Traditional Traditional

sl programming | OS

Parallelism A
Deterministic | General

rallel) .
PEICLE parallelism parallelism

15-853 36

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-853 37

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-853 38

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-853 39

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-853 40

10

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) {
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {
do {
link* h = headPtr;
if (h == NULL) return NULL;
link* nxt = h->next;
while ('CAS(&headPtr, h, nxt))}
return h;}

15-853 41

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) {
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {
do {
link* h = headPtr;
if (h == NULL) return NULL;
link* nxt = h->next;
while (!'CAS(&headPtr, h, nxt))}
return h;}

15-853 42

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) {
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {

do {
link* h = headPtr;
if (h == NULL) return NULL;

link* nxt = h->next;
while ('CAS(&headPtr, h, nxt))}
return h;}

15-853 43

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) ({
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {

do {
link* h = headPtr;
if (h == NULL) return NULL;

link* nxt = h->next;
while (!'CAS(&headPtr, h, nxt))}
return h;}

15-853 44

11

Concurrency : Stack Example 2

Pl : x

s.pop(); y = s.pop(); s.push(x);
P2 : z

s.pop();

Before:

After: P2: h = headPtr;
P2: nxt = h->next;
Pl: everything

The ABA problem P2: CAS(&headPtr,h,nxt)
Can be fixed with counter and 2CAS, but...

15-853 45

Concurrency : Stack Example 3

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
atomic {

a->next

headPtr

headPtr;
a; }}

link* pop() {
atomic {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}}

15-853

46

Concurrency : Stack Example 3'

void swapTop (stack s) {
link* x = s.pop();
link* y = s.pop()
push (x) ;
push(y) ;

Queues are trickier than stacks.

15-853 47

12

