
1	

Page1

15-210: Parallelism in the Real World
•  Types of paralellism
•  Parallel Thinking
•  Nested Parallelism
•  Examples (Cilk, OpenMP, Java Fork/Join)
•  Concurrency

15-853

Cray-1 (1976): the world’s most
expensive love seat

15-210 2

Data Center: Hundred’s of
thousands of computers

3 15-210

Since 2005: Multicore computers

15-210 4

2	

Moore’s Law

15-210 5

Moore’s Law and Performance

15-210 6

Page 7 Andrew Chien, 2008 15-210

64 core blade servers ($6K)
(shared memory)

Page 8

x 4 =

15-210

3	

1024 “cuda” cores

15-210 9 15-210 10

Circa November 2012

15-210 11 15-210 12

4	

Parallel Hardware
Many forms of parallelism

–  Supercomputers: large scale, shared memory
–  Clusters and data centers: large-scale,

distributed memory
–  Multicores: tightly coupled, smaller scale
–  GPUs, on chip vector units
–  Instruction-level parallelism

Parallelism is important in the real world.

15-210 13

Key Challenge: Software
(How to Write Parallel Code?)

At a high-level, it is a two step process:
–  Design a work-efficient, low-span parallel

algorithm
–  Implement it on the target hardware

In reality: each system required different code because
programming systems are immature
–  Huge effort to generate efficient parallel code.

•  Example: Quicksort in MPI is 1700 lines of code,
and about the same in CUDA

–  Implement one parallel algorithm: a whole thesis.

15-210 14

15-210 Approach

Enable parallel thinking by raising abstraction level

I. Parallel thinking: Applicable to many machine models and
programming languages

II. Reason about correctness and efficiency of algorithms
and data structures.

15-210 15

Parallel Thinking
Recognizing true dependences: unteach sequential

programming.

Parallel algorithm-design techniques

–  Operations on aggregates: map/reduce/scan
–  Divide & conquer, contraction
–  Viewing computation as DAG (based on

dependences)

Cost model based on work and span

15-210 16

5	

Page 17

Quicksort from
 Aho-Hopcroft-Ullman (1974)

procedure QUICKSORT(S):
 if S contains at most one element then return S
 else
 begin
 choose an element a randomly from S;
 let S1, S2 and S3 be the sequences of
 elements in S less than, equal to,
 and greater than a, respectively;
 return (QUICKSORT(S1) followed by S2
 followed by QUICKSORT(S3))
end

15-210 Page 18

Quicksort from Sedgewick (2003)

public void quickSort(int[] a, int left, int right) {
 int i = left-1; int j = right;
 if (right <= left) return;
 while (true) {
 while (a[++i] < a[right]);
 while (a[right] < a[--j])
 if (j==left) break;
 if (i >= j) break;
 swap(a,i,j); }
 swap(a, i, right);
 quickSort(a, left, i - 1);
 quickSort(a, i+1, right); }

15-210

Styles of Parallel Programming
Data parallelism/Bulk Synchronous/SPMD
Nested parallelism : what we covered
Message passing
Futures (other pipelined parallelism)
General Concurrency

15-853 Page19

Nested Parallelism
Nested Parallelism =
 arbitrary nesting of parallel loops + fork-join

–  Assumes no synchronization among parallel
tasks except at joint points.

–  Deterministic if no race conditions

Advantages:

–  Good schedulers are known
–  Easy to understand, debug, and analyze
–  Purely functional, or imperative…either works

!
 !

Page20 15-853

6	

Nested Parallelism: parallel loops
cilk_for (i=0; i < n; i++) !
 B[i] = A[i]+1;!
!
Parallel.ForEach(A, x => x+1);!
!
!
B = {x + 1 : x in A}!
!
#pragma omp for !
for (i=0; i < n; i++)  

B[i] = A[i] + 1;!
!
 !

Page21

Cilk

Microsoft TPL

(C#,F#)

Nesl, Parallel Haskell

OpenMP

!
!
 !

15-853

Nested Parallelism: fork-join
cobegin { !
 S1;!
 S2;}!
!
coinvoke(f1,f2)!
Parallel.invoke(f1,f2)!
!
#pragma omp sections!
{ !
 #pragma omp section!
 S1;!
 #pragma omp section!
 S2;!
}!

!
!
 !

Page22

Dates back to the 60s. Used in
dialects of Algol, Pascal

Java fork-join framework
Microsoft TPL (C#,F#)

OpenMP (C++, C, Fortran, …)
 !

!
!
 !15-853

Nested Parallelism: fork-join

Page23

spawn S1;!
S2;!
sync;!
!
!
(exp1 || exp2)!
!
!
plet!
 x = exp1!
 y = exp2!
in!
 exp3!
!
 !

!
!
 !

!
cilk, cilk+!
!
!
!
Various functional

languages!
!
!
Various dialects of

ML and Lisp!
 !

!
!
 !

15-853

Cilk vs. what we’ve covered
ML: val (a,b) = par(fn () => f(x),
 fn () => g(y))
Psuedocode: val (a,b) = (f(x) || g(y))
Cilk: cilk_spawn f(x);
 g(y);
 cilk_sync;

ML: S = tabulate f(i) n
Psuedocode: S = <f(i) : i in <0,..n-1>>
Cilk: cilk_for (int i = 0; i < n; i++)
 S[i] = f(i)
 15-853 Page24

Fork Join

Parallel
loops

7	

Cilk vs. what we’ve covered
ML: S = tabulate f(i) n
Psuedocode: S = <f(i) : i in <0,..n-1>>
Cilk: cilk_for (int i = 0; i < n; i++)
 S[i] = f(i)

15-853 Page25

Serial Parallel DAGs
Dependence graphs of nested parallel computations are

series parallel

Two tasks are parallel if not reachable from each other.
A data race occurs if two parallel tasks are involved in a

race if they access the same location and at least one
is a write.

Page26 15-853

Cost Model (General)
Compositional:

Work : total number of operations

–  costs are added across parallel calls

Span : depth/critical path of the computation
–  Maximum span is taken across forked calls

Parallelism = Work/Span
–  Approximately # of processors that can be

effectively used.
Page27 15-853 28

Combining for parallel for:
 pfor (i=0; i<n; i++)

 f(i);

€

Wpexp(pfor ...) = Wexp(f(i))
i=0

n−1

∑

€

Dpexp(pfor ...) = i=0
n−1max Dexp(f(i))

work

span

Combining costs (Nested Parallelism)

15-853

8	

29

Simple measures that give us a good sense of
efficiency (work) and scalability (span).

Can schedule in O(W/P + D) time on P processors.
This is within a constant factor of optimal.
Goals in designing an algorithm

1.  Work should be about the same as the
sequential running time. When it matches
asymptotically we say it is work efficient.

2.  Parallelism (W/D) should be polynomial.
O(n1/2) is probably good enough

Why Work and Span

15-853

Example Cilk
int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = cilk_spawn fib(n-1);
 y = cilk_spawn fib(n-2);
 cilk_sync;
 return (x+y);
 }
}

15-853 Page30

Example OpenMP:
Numerical Integration

15-210 31

∫ 4.0

(1+x2)
dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

where each rectangle has
width Δx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X

0.0

The C code for Approximating PI

15-210 32

9	

The C/openMP code for Approx. PI

15-210 33

Example : Java Fork/Join
class Fib extends FJTask {!
 volatile int result; // serves as arg and result!
 int n;!
 Fib(int _n) { n = _n; }!
 !
 public void run() {!
 if (n <= 1) result = n;!
 else if (n <= sequentialThreshold) number = seqFib(n);!
 else {!
 Fib f1 = new Fib(n - 1); !
 Fib f2 = new Fib(n - 2);!
 coInvoke(f1, f2); !
 result = f1.result + f2.result;!
 }!
 }!
}!

15-853 Page34

How do the problems do on
a modern multicore

15-210 35

Tseq/T32
31.6
21.6
11.2
10
9

14.5
15
17
11.7
17
18
15

0"

4"

8"

12"

16"

20"

24"

28"

32"

So
rt"

Du
pli
ca
te"
Re
mo
va
l"

Mi
n"S
pa
nn
ing
"Tr
ee
"

Ma
x"I
nd
ep
en
d."
Se
t"

Sp
an
nin
g"F
ore
st"

Bre
ad
th"
Fir
st"
Se
arc
h"

De
lau
na
y"T
ria
ng
."

Tri
an
gle
"Ra
y"I
nte
r."

Ne
are
st"
Ne
igh
bo
rs"

Sp
ars
e"M

xV
"

Nb
od
y"

Su
ffix
"Ar
ray
"

T1/T32"
Tseq/T32"

Parallelism vs. Concurrency

Concurrency

sequential concurrent

Parallelism
serial Traditional

programming
Traditional
OS

parallel Deterministic
parallelism

General
parallelism

36

"   Parallelism: using multiple processors/cores
running at the same time. Property of the machine

"   Concurrency: non-determinacy due to interleaving
threads. Property of the application.

15-853

10	

Concurrency : Stack Example 1
struct link {int v; link* next;}

struct stack {
 link* headPtr;

 void push(link* a) {
 a->next = headPtr;
 headPtr = a; }

 link* pop() {
 link* h = headPtr;
 if (headPtr != NULL)
 headPtr = headPtr->next;
 return h;}
}

37

H

A

H

A

15-853

Concurrency : Stack Example 1
struct link {int v; link* next;}

struct stack {
 link* headPtr;

 void push(link* a) {
 a->next = headPtr;
 headPtr = a; }

 link* pop() {
 link* h = headPtr;
 if (headPtr != NULL)
 headPtr = headPtr->next;
 return h;}
}

38

H

A

B

15-853

Concurrency : Stack Example 1
struct link {int v; link* next;}

struct stack {
 link* headPtr;

 void push(link* a) {
 a->next = headPtr;
 headPtr = a; }

 link* pop() {
 link* h = headPtr;
 if (headPtr != NULL)
 headPtr = headPtr->next;
 return h;}
}

39

H

A

B

15-853

Concurrency : Stack Example 1
struct link {int v; link* next;}

struct stack {
 link* headPtr;

 void push(link* a) {
 a->next = headPtr;
 headPtr = a; }

 link* pop() {
 link* h = headPtr;
 if (headPtr != NULL)
 headPtr = headPtr->next;
 return h;}
}

40

H

A

B

15-853

11	

Concurrency : Stack Example 2
struct stack {
 link* headPtr;

 void push(link* a) {
 do {
 link* h = headPtr;
 a->next = h;
 while (!CAS(&headPtr, h, a)); }

 link* pop() {
 do {
 link* h = headPtr;
 if (h == NULL) return NULL;
 link* nxt = h->next;
 while (!CAS(&headPtr, h, nxt))}
 return h;}
}

41

H

A

15-853

Concurrency : Stack Example 2
struct stack {
 link* headPtr;

 void push(link* a) {
 do {
 link* h = headPtr;
 a->next = h;
 while (!CAS(&headPtr, h, a)); }

 link* pop() {
 do {
 link* h = headPtr;
 if (h == NULL) return NULL;
 link* nxt = h->next;
 while (!CAS(&headPtr, h, nxt))}
 return h;}
}

42

H

A

15-853

Concurrency : Stack Example 2
struct stack {
 link* headPtr;

 void push(link* a) {
 do {
 link* h = headPtr;
 a->next = h;
 while (!CAS(&headPtr, h, a)); }

 link* pop() {
 do {
 link* h = headPtr;
 if (h == NULL) return NULL;
 link* nxt = h->next;
 while (!CAS(&headPtr, h, nxt))}
 return h;}
}

43

H

A

B

15-853

Concurrency : Stack Example 2
struct stack {
 link* headPtr;

 void push(link* a) {
 do {
 link* h = headPtr;
 a->next = h;
 while (!CAS(&headPtr, h, a)); }

 link* pop() {
 do {
 link* h = headPtr;
 if (h == NULL) return NULL;
 link* nxt = h->next;
 while (!CAS(&headPtr, h, nxt))}
 return h;}
}

44

H

A

B

15-853

12	

Concurrency : Stack Example 2’
P1 : x = s.pop(); y = s.pop(); s.push(x);

P2 : z = s.pop();

45

The ABA problem
Can be fixed with counter and 2CAS, but…

A B C

B C

Before:

After: P2: h = headPtr;
P2: nxt = h->next;
P1: everything
P2: CAS(&headPtr,h,nxt)

15-853

Concurrency : Stack Example 3
struct link {int v; link* next;}

struct stack {
 link* headPtr;

 void push(link* a) {
 atomic {
 a->next = headPtr;
 headPtr = a; }}

 link* pop() {
 atomic {
 link* h = headPtr;
 if (headPtr != NULL)
 headPtr = headPtr->next;
 return h;}}
}

46 15-853

Concurrency : Stack Example 3’
void swapTop(stack s) {
 link* x = s.pop();
 link* y = s.pop();
 push(x);
 push(y);

}

Queues are trickier than stacks.

47 15-853

