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15-210: Parallelism in the Real World 
•  Types of paralellism 
•  Parallel Thinking 
•  Nested Parallelism 
•  Examples (Cilk, OpenMP, Java Fork/Join) 
•  Concurrency 
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Cray-1 (1976): the world’s most 
expensive love seat 
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Data Center: Hundred’s of 
thousands of computers 
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Since 2005: Multicore computers 
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Moore’s Law 
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Moore’s Law and Performance 
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Page 7 Andrew Chien, 2008 15-210 

64 core blade servers ($6K) 
(shared memory) 
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1024 “cuda” cores 
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Circa November 2012 
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Parallel Hardware 
Many forms of parallelism 

–  Supercomputers: large scale, shared memory 
–  Clusters and data centers: large-scale, 

distributed memory  
–  Multicores: tightly coupled, smaller scale 
–  GPUs, on chip vector units 
–  Instruction-level parallelism 

Parallelism is important in the real world.   
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Key Challenge: Software 
(How to Write Parallel Code?) 

At a high-level, it is a two step process: 
–  Design a work-efficient, low-span parallel 

algorithm 
–  Implement it on the target hardware 

In reality: each system required different code because 
programming systems are immature 
–  Huge effort to generate efficient parallel code. 

•  Example: Quicksort in MPI is 1700 lines of code, 
and about the same in CUDA 

–  Implement one parallel algorithm: a whole thesis. 
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15-210 Approach 

Enable parallel thinking by raising abstraction level 
 
I. Parallel thinking: Applicable to many machine models and 
programming languages 
 
II. Reason about correctness and efficiency of algorithms 
and data structures. 
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Parallel Thinking 
Recognizing true dependences: unteach sequential 

programming. 
 
Parallel algorithm-design techniques 

–  Operations on aggregates: map/reduce/scan 
–  Divide & conquer, contraction 
–  Viewing computation as DAG (based on 

dependences) 
 
Cost model based on work and span 
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Quicksort from 
 Aho-Hopcroft-Ullman (1974) 

procedure QUICKSORT(S): 
  if S contains at most one element then return S 
  else 
    begin 
      choose an element a randomly from S; 
      let S1, S2 and S3 be the sequences of 
           elements in S less than, equal to,  
           and greater than a, respectively; 
      return (QUICKSORT(S1) followed by S2  
         followed by QUICKSORT(S3)) 
end 
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Quicksort from Sedgewick (2003)  

public void quickSort(int[] a, int left, int right) { 
    int i = left-1;  int j = right;  
    if (right <= left) return;  
    while (true) { 
      while (a[++i] < a[right]); 
      while (a[right] < a[--j])  
        if (j==left) break;  
      if (i >= j) break; 
      swap(a,i,j); } 
    swap(a, i, right);  
    quickSort(a, left, i - 1);  
    quickSort(a, i+1, right); } 
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Styles of Parallel Programming 
Data parallelism/Bulk Synchronous/SPMD  
Nested parallelism : what we covered 
Message passing 
Futures (other pipelined parallelism) 
General Concurrency 
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Nested Parallelism 
Nested Parallelism = 
    arbitrary nesting of parallel loops + fork-join 

–  Assumes no synchronization among parallel 
tasks except at joint points. 

–  Deterministic if no race conditions 
 
Advantages:  

–  Good schedulers are known 
–  Easy to understand, debug, and analyze 
–  Purely functional, or imperative…either works 

 
   
 
!
  !
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Nested Parallelism: parallel loops 
cilk_for (i=0; i < n; i++) !
   B[i] = A[i]+1;!
!
Parallel.ForEach(A, x => x+1);!
!
!
B = {x + 1 : x in A}!
!
#pragma omp for !
for (i=0; i < n; i++)  

B[i] = A[i] + 1;!
!
  !

Page21 

Cilk 
 
Microsoft TPL 

(C#,F#) 
 
Nesl, Parallel Haskell 
 
OpenMP 
 
 
 
!
!
  !
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Nested Parallelism: fork-join 
cobegin { !
  S1;!
  S2;}!
!
coinvoke(f1,f2)!
Parallel.invoke(f1,f2)!
!
#pragma omp sections!
{ !
  #pragma omp section!
  S1;!
  #pragma omp section!
  S2;!
}!

!
!
  !
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Dates back to the 60s.  Used in 
dialects of Algol, Pascal 

 
Java fork-join framework 
Microsoft TPL (C#,F#) 
 
 
 
OpenMP (C++, C, Fortran, …) 
 !

!
!
  !15-853 

Nested Parallelism: fork-join 
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spawn S1;!
S2;!
sync;!
!
!
(exp1 || exp2)!
!
!
plet!
  x = exp1!
  y = exp2!
in!
  exp3!
!
 !

!
!
  !

!
cilk, cilk+!
!
!
!
Various functional 

languages!
!
!
Various dialects of 

ML and Lisp!
 !

!
!
  !

15-853 

Cilk vs. what we’ve covered 
ML:                val (a,b) = par(fn () => f(x),  
                                            fn () => g(y))  
Psuedocode:   val (a,b) = (f(x) || g(y))   
Cilk:                cilk_spawn f(x);  
                       g(y);  
                       cilk_sync;  
 
ML:                S  = tabulate f(i) n 
Psuedocode:   S  = <f(i) : i in <0,..n-1>> 
Cilk:                cilk_for (int i = 0; i < n; i++) 
                         S[i] = f(i) 
               15-853 Page24 

Fork Join 

Parallel 
loops 
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Cilk vs. what we’ve covered 
ML:                S  = tabulate f(i) n 
Psuedocode:   S  = <f(i) : i in <0,..n-1>> 
Cilk:               cilk_for (int i = 0; i < n; i++) 
                         S[i] = f(i) 
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Serial Parallel DAGs 
Dependence graphs of nested parallel computations are 

series parallel 
 
 
 
 
 
Two tasks are parallel if not reachable from each other. 
A data race occurs if two parallel tasks are involved in a 

race if they access the same location and at least one 
is a write. 
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Cost Model (General) 
Compositional: 
 
Work : total number of operations 

–   costs are added across parallel calls 

Span : depth/critical path of the computation 
–  Maximum span is taken across forked calls 

Parallelism = Work/Span 
–  Approximately # of processors that can be 

effectively used. 
Page27 15-853 28 

Combining for parallel for: 
       pfor (i=0; i<n; i++) 

         f(i); 

€ 

Wpexp(pfor ...) = Wexp(f(i))
i=0

n−1

∑

€ 

Dpexp(pfor ...) = i=0
n−1max Dexp(f(i))    

work 

span 

Combining costs (Nested Parallelism) 
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Simple measures that give us a good sense of 
efficiency (work) and scalability (span). 

Can schedule in O(W/P + D) time on P processors. 
This is within a constant factor of optimal. 
Goals in designing an algorithm 

1.  Work should be about the same as the 
sequential running time.  When it matches 
asymptotically we say it is work efficient. 

2.  Parallelism (W/D) should be polynomial.  
O(n1/2) is probably good enough 

    

Why Work and Span 
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Example Cilk 
int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = cilk_spawn fib(n-1); 
    y = cilk_spawn fib(n-2); 
    cilk_sync; 
    return (x+y); 
  } 
} 
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Example OpenMP: 
Numerical Integration 
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∫ 4.0

(1+x2)
dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the 
integral as a sum of 
rectangles:

where each rectangle has 
width Δx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X

0.0

The C code for Approximating PI 
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The C/openMP code for Approx. PI 

15-210 33 

Example : Java Fork/Join 
class Fib extends FJTask {!
   volatile int result; // serves as arg and result!
   int n;!
   Fib(int _n) { n = _n; }!
   !
   public void run() {!
      if (n <= 1) result = n;!
      else if (n <= sequentialThreshold) number = seqFib(n);!
      else {!
         Fib f1 = new Fib(n - 1); !
         Fib f2 = new Fib(n - 2);!
         coInvoke(f1, f2); !
         result = f1.result + f2.result;!
      }!
   }!
}!
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How do the problems do on  
a modern multicore 
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Parallelism vs. Concurrency 

Concurrency 

sequential concurrent 

Parallelism 
serial Traditional 

programming 
Traditional 
OS 

parallel Deterministic 
parallelism 

General 
parallelism 

36 

"   Parallelism: using multiple processors/cores 
running at the same time. Property of the machine 

"   Concurrency: non-determinacy due to interleaving 
threads.  Property of the application. 

15-853 
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Concurrency : Stack Example 1 
struct link {int v; link* next;} 

struct stack { 
  link* headPtr; 

  void push(link* a) { 
    a->next = headPtr; 
    headPtr = a;   } 

  link* pop() { 
    link* h = headPtr; 
    if (headPtr != NULL)  
      headPtr = headPtr->next; 
    return h;} 
} 

37 
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Concurrency : Stack Example 1 
struct link {int v; link* next;} 

struct stack { 
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Concurrency : Stack Example 1 
struct link {int v; link* next;} 
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Concurrency : Stack Example 1 
struct link {int v; link* next;} 
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Concurrency : Stack Example 2 
struct stack { 
  link* headPtr; 

  void push(link* a) { 
    do { 
      link* h = headPtr; 
      a->next = h; 
    while (!CAS(&headPtr, h, a)); } 

  link* pop() { 
    do { 
      link* h = headPtr; 
      if (h == NULL) return NULL; 
      link* nxt = h->next; 
    while (!CAS(&headPtr, h, nxt))}  
    return h;} 
} 
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Concurrency : Stack Example 2 
struct stack { 
  link* headPtr; 

  void push(link* a) { 
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      link* h = headPtr; 
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Concurrency : Stack Example 2 
struct stack { 
  link* headPtr; 
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    do { 
      link* h = headPtr; 
      a->next = h; 
    while (!CAS(&headPtr, h, a)); } 

  link* pop() { 
    do { 
      link* h = headPtr; 
      if (h == NULL) return NULL; 
      link* nxt = h->next; 
    while (!CAS(&headPtr, h, nxt))}  
    return h;} 
} 

43 

H

A

B 

15-853 

Concurrency : Stack Example 2 
struct stack { 
  link* headPtr; 

  void push(link* a) { 
    do { 
      link* h = headPtr; 
      a->next = h; 
    while (!CAS(&headPtr, h, a)); } 

  link* pop() { 
    do { 
      link* h = headPtr; 
      if (h == NULL) return NULL; 
      link* nxt = h->next; 
    while (!CAS(&headPtr, h, nxt))}  
    return h;} 
} 
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Concurrency : Stack Example 2’ 
P1 : x = s.pop();  y = s.pop();  s.push(x); 

P2 : z = s.pop(); 

45 

The ABA problem 
Can be fixed with counter and 2CAS, but… 

A B C 

B C 

Before: 

After: P2: h = headPtr; 
P2: nxt = h->next; 
P1: everything 
P2: CAS(&headPtr,h,nxt) 
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Concurrency : Stack Example 3 
struct link {int v; link* next;} 

struct stack { 
  link* headPtr; 

  void push(link* a) { 
    atomic { 
      a->next = headPtr; 
      headPtr = a;   }} 

  link* pop() { 
    atomic { 
      link* h = headPtr; 
      if (headPtr != NULL)  
        headPtr = headPtr->next; 
      return h;}} 
} 
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Concurrency : Stack Example 3’ 
void swapTop(stack s) { 
  link* x = s.pop(); 
  link* y = s.pop(); 
  push(x); 
  push(y); 

} 

 
Queues are trickier than stacks. 
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