
Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

Lecture 19 — Quicksort and Sorting Lower Bounds

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2013)

Lectured by Umut Acar — 28 March 2013

1 Quicksort

You have surely seen quicksort before. The purpose of this lecture is to analyze quicksort in terms
of both its work and its span. As we will seen in upcoming lectures, the analysis of quicksort is
effectively identical to the analysis of a certain type of balanced tree called Treaps. It is also the same
as the analysis of “unbalanced” binary search trees under random insertion.

Quicksort is one of the earliest and most famous algorithms. It was invented and analyzed
by Tony Hoare around 1960. This was before the big-O notation was used to analyze algorithms.
Hoare invented the algorithm while an exchange student at Moscow State University while studying
probability under Kolmogorov—one of the most famous researchers in probability theory. The analysis
we will cover is different from what Hoare used in his original paper, although we will mention how
he did the analysis.

Consider the following implementation of quicksort. In this implementation, we intentionally
leave the pivot-choosing step unspecified because the property we are discussing holds regardless of
the choice of the pivot.

1 function quicksort(S) =
2 if |S|= 0 then S
3 else let
4 p = pick a pivot from S
5 S1 =

s ∈ S | s < p
�

6 S2 =

s ∈ S | s = p
�

7 S3 =

s ∈ S | s > p
�

8 (R1, R3) =
�

quicksort(S1) ‖ quicksort(S3)
�

9 in
10 append(R1,append(S2, R2))
11 end

There is clearly plenty of parallelism in this version quicksort.1 There is both parallelism due to the
two recursive calls and in the fact that the filters for selecting elements greater, equal, and less than
the pivot can be parallel.

The question to ask is: How does the pivot choice effect the costs of quicksort? It will be useful
to consider the function call tree generated by quicksort. Each call to quicksort either makes no

†Lecture notes by Umut A. Acar, Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.
1This differs from Hoare’s original version which sequentially partitioned the input by the pivot using two fingers that

moved from each end and swapping two keys whenever a key was found on the left greater than the pivot and on the right
less than the pivot.

1 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

recursive calls (the base case) or two recursive calls. The call tree is therefore binary. We will be
interested in analyzing the depth of this tree since this will help us derive the span of the quicksort
algorithm.

Let’s consider some strategies for picking a pivot:

• Always pick the first element: If the sequence is sorted in increasing order, then picking the first
element is the same as picking the smallest element. We end up with a lopsided recursion tree
of depth n. The total work is O(n2) since n− i keys will remain at level i and hence we will do
n− i− 1 comparisons at that level for a total of

∑n−1
i=0 (n− i− 1). Similarly, if the sequence is

sorted in decreasing order, we will end up with a recursion tree that is lopsided in the other
direction. In practice, it is not uncommon for a sort function input to be a sequence that is
already sorted or nearly sorted.

• Pick the median of three elements: Another strategy is to take the first, middle, and the last
elements and pick the median of them. For sorted lists the split is even, so each side contains
half of the original size and the depth of the tree is O(log n). Although this strategy avoids
the pitfall with sorted sequences, it is still possible to be unlucky, and in the worst-case the
costs and tree depth are the same as the first strategy. This is the strategy used by many library
implementations of quicksort.

• Pick an element randomly: It is not immediately clear what the depth of this is, but intuitively,
when we choose a random pivot, the size of each side is not far from n/2 in expectation. This
doesn’t give us a proof but it gives us hope that this strategy will result in a tree of depth
O(log n) in expectation. Indeed, picking a random pivot gives us expected O(n log n) work and
O(log2 n) span for quicksort and an expected O(log n)-depth tree, as we will show.

We are interested in picking elements at random.

2 Expected work for randomized quicksort

As discussed above, if we always pick the first element then the worst-case work is O(n2), for example
when the array is already sorted. The expected work, though, is O(n log n) as we will prove below.
That is, the work averaged over all possible input ordering is O(n log n). In other words, on most
input this naive version of quicksort works well on average, but can be slow on some (common)
inputs.

On the other hand, if we choose an element randomly to be the pivot, the expected worst-case
work is O(n log n). That is, for input in any order, the expected work is O(n log n): No input has
expected O(n2) work. But with a very small probability we can be unlucky, and the random pivots
result in unbalanced partitions and the work is O(n2).

For the analysis of randomized quicksort, we’ll consider a completely equivalent algorithm that
will be slightly easier to analyze. Before the start of the algorithm, we’ll pick for each element
a random priority uniformly at random from the real interval [0,1]—and in Line 4 in the above
algorithm, we’ll instead pick the key with the highest priority. Notice that once the priorities are
decided, the algorithm is completely deterministic; you should convince yourself that the two

2 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

presentations of randomized quicksort are fully equivalent (modulo the technical details about how
we might store the priority values).

We’re interested in counting how many comparisons quicksort makes. This immediately
bounds the work for the algorithm because this is where the bulk of work is done. That is, if we let

Xn = # of comparisons quicksort makes on input of size n,

our goal is to find an upper bound on E
�

Xn
�

for any input sequence S. For this, we’ll consider the
final sorted order2 of the keys T = sort(S). In this terminology, we’ll also denote by pi the priority
we chose for the element Ti .

We’ll derive an expression for Xn by breaking it up into a bunch of random variables and bound
them. Consider two positions i, j ∈ {1, . . . , n} in the sequence T . We use the random indicator
variables Ai j to indicate whether we compare the elements Ti and T j during the algorithm—i.e., the
variable will take on the value 1 if they are compared and 0 otherwise.

The crux of the matter is in describing the event Ai j = 1 in terms of a simple event that we have a
handle on. Before we prove any concrete result, let’s take a closer look at the quicksort algorithm
to gather some intuitions. Notice that the top level takes as its pivot p the element with highest
priority. Then, it splits the sequence into two parts, one with keys larger than p and the other with
keys smaller than p. For each of these parts, we run quicksort recursively; therefore, inside it, the
algorithm will pick the highest priority element as the pivot, which is then used to split the sequence
further.

For any one call to quicksort there are three possibilities for Ai j , where i < j:

• The pivot (highest priority element) is either Ti or T j, in which case Ti and T j are compared
and Ai j = 1.

• The pivot is element between Ti and T j , in which case Ti is in S1 and T j is in S3 and Ti and T j
will never be compared and Ai j = 0.

• The pivot is less than Ti or greater than T j . Then Ti and T j are either both in S1 or both in S3,
respectively. Whether Ti and T j are compared will be determined in some later recursive call
to quicksort.

Observation 2.1. If two elements are compared if and only if one of them they will never be compared
again in other call.

In the first case above, when two elements are compared, the non-pivot element is part of S1,
S2, or S3—but the pivot element is part of S2, on which we don’t recurse. This gives the following
observation:

Observation 2.2. If two elements are compared in a quicksort call, they will never be compared
again in other call.

Also notice in the corresponding BST, when two elements are compared, the pivot element
become the root of two subtrees, one of which contains the other element.

2Formally, there’s a permutation π: {1, . . . , n} → {1, . . . , n} between the positions of S and T .

3 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

Observation 2.3. In the quicksort algorithm, two elements are compared in a quicksort call if and
only if one element is an ancestor of the other in the corresponding BST.

Therefore, with these random variables, we can express the total comparison count Xn as follows:

Xn ≤ 3
n
∑

i=1

n
∑

j=i+1

Ai j

The constant 3 is because our not-so-optimized quicksort compares each element to a pivot 3 times.
By linearity of expectation, we have E

�

Xn
�

≤ 3
∑n

i=1

∑n
j=i+1 E

�

Ai j

�

. Furthermore, since each Ai j is

an indicator random variable, E
�

Ai j

�

= Pr
�

Ai j = 1
�

. Our task therefore comes down to computing

the probability that Ti and T j are compared (i.e., Pr
�

Ai j = 1
�

) and working out the sum.

Computing the probability Pr
�

Ai j = 1
�

. Let us first consider the first two cases when the pivot is
one of Ti , Ti+1, ..., T j . With this view, the following observation is not hard to see:

Claim 2.4. For i < j, Ti and T j are compared if and only if pi or p j has the highest priority among
{pi , pi+1, . . . , p j}.

Proof. We’ll show this by contradiction. Assume there is a key Tk, i < k < j with a higher priority
between them. In any collection of keys that include Ti and T j , Tk will become a pivot before either of
them. Since Tk “sits” between Ti and Tk (i.e., Ti ≤ Tk ≤ T j) , it will separate Ti and T j into different
buckets, so they are never compared.

Therefore, for Ti and T j to be compared, pi or p j has to be bigger than all the priorities in
between. Since there are j − i+ 1 possible keys in between (including both i and j) and each has
equal probability of being the highest, the probability that either i or j is the greatest is 2/(j− i + 1).
Therefore,

E
�

Ai j

�

= Pr
�

Ai j = 1
�

= Pr
�

pi or p j is the maximum among {pi , . . . , p j}
�

=
2

j− i+ 1
.

Notice that element Ti is compared to Ti+1 with probability 1. It is easy to understand why if
we consider the corresponding BST. One of Ti and Ti+1 must be an ancestor of the other in the BST:
There is no element that could be the root of a subtree that has Ti in its left subtree and Ti+1 in its
right subtree. On the other hand, if we consider Ti and Ti+2 there could be such an element, namely
Ti+1, which could have Ti in its left subtree and Ti+2 in its right subtree. That is, with probability 1/3,
Ti+1 has the highest probability of the three and Ti is not compared to Ti+2, and with probability 2/3
one of Ti and Ti+2 has the highest probability and, the two are compared. In general, the probability
of two elements being compared is inversely proportional to the number of elements between them

4 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

when sorted. The further apart the less likely they will be compared. Analogously, the further apart
the less likely one will be the ancestor of the other in the related BST.

Hence, the expected number of comparisons made in randomized quicksort is

E
�

Xn
�

≤ 3
n−1
∑

i=1

n
∑

j=i+1

E
�

Ai j

�

= 3
n−1
∑

i=1

n
∑

j=i+1

2

j− i+ 1

= 3
n−1
∑

i=1

n
n−i+1
∑

k=2

2

k

≤ 6
n−1
∑

i=1

Hn

= 6nHn ∈ O(n log n)

Indirectly, we have also shown that the average work for the basic deterministic quicksort (always
pick the first element) is also O(n log n). Just shuffle the data randomly and then apply the basic
quicksort algorithm. Since shuffling the input randomly results in the same input as picking random
priorities and then reordering the data so that the priorities are in decreasing order, the basic quicksort
on that shuffled input does the same operations as randomized quicksort on the input in the original
order. Thus, if we averaged over all permutations of the input the work for the basic quicksort is
O(n log n) on average.

2.1 An alternative method

Another way to analyze the work of quicksort is to write a recurrence for the expected work (number
of comparisons) directly. This is the approach taken by Tony Hoare in his original paper. For simplicity
we assume there are no equal keys (equal keys just reduce the cost). The recurrence for the number
of comparisons X (n) done by quicksort is then:

X (n) = X (Yn) + X (n− Yn− 1) + n− 1

where the random variable Yn is the size of the the set S1 (we use X (n) instead of Xn to avoid double
subscrips). We can now write an equation for the expectation of X (n).

E [X (n)] = E
�

X (Yn) + X (n− Yn− 1) + n− 1
�

= E
�

X (Yn)
�

+ E
�

X (n− Yn− 1)
�

+ n− 1

=
1

n

n−1
∑

i=0

(E [X (i)] + E [X (n− i− 1)]) + n− 1

where the last equality arises since all positions of the pivot are equally likely, so we can just take
the average over them. This can be by guessing the answer and using substitution. It gives the same
result as our previous method. We leave this as exercise.

5 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

3 Expected Span of Quicksort

Recall that in randomized quicksort, at each recursive call, we partition the input sequence S of
length n into three subsequences L, E, and R, such that elements in the subsequences are less than,
equal, and greater than the pivot, respectfully. Let Mn = max{|L|, |R|}, which is the size of larger
subsequence. The span of quicksort is determined by the sizes of these larger subsequences. For ease
of analysis, we will assume that |E| = 0, as more equal elements will only decrease the span. As this
partitioning uses filter we have the following recurrence for span:

S(n) = S(Xn) +O(log n)

For the analysis, we are going to use the conditioning technique for computing expectations.
Specifically, we wiss use the total expectation theorem. Let X be a random variable and let Ai be
disjoint events that form a a partition of the sample space such that P(Ai)?0. The total expectation
theorem states that

E[X] =
n
∑

i=1

P(Ai) · E[X |Ai].

As we did for SmallestK, we will bound E[Sn] by considering the Pr
�

Xn ≤ 3n/4
�

and Pr
�

Xn > 3n/4
�

and use the maximum sizes in the recurrence to upper bound E
�

Sn
�

. Now, the Pr
�

Xn ≤ 3n/4
�

= 1/2,
since half of the randomly chosen pivots results in the larger partition to be at most 3n/4 elements:
Any pivot in the range Tn/4 to T3n/4 will do, where T is the sorted input sequence.

By conditioning Sn on the random variable Mn, we write,

E[Sn] =
n
∑

m=n/2

Pr
�

Mn = m
�

· E[Sn|(Mn = m).

Now, we can write this trivially as

E[Sn] =
n
∑

m=n/2

Pr
�

Mn = m
�

· E[Sm].

The rest is algebra

E[Sn] =
n
∑

m=n/2

Pr
�

Mn = m
�

· E[Sm]

≤ Pr
�

Mn ≤
3n

4

�

· E[S 3n
4
] + Pr

�

Mn >
3n

4

�

· E[Sn] + c · log n

≤
1

2
E[S 3n

4
] +

1

2
E[Sn]

=⇒ E[Sn]≤ E[S 3n
4
] + 2c log n.

This is a recursion in E[S(·)] and solves easily to E[S(n)] = O(log2 n).

6 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

4 Lower Bounds

After spending time formulating a concrete problem, we might wonder how hard the problem actually
is. In this course thus far, our focus has been on obtaining efficient algorithms for certain problems.
For a problem P, we try to design efficient algorithms to solve it. The existence of an algorithm gives
an upper bound on the complexity of the problem P. In particular, an algorithm A with work (either
expected or worst-case) O(f (n)) is a constructive proof that P can be solved provided O(f (n)) work.
This is essentially the upper bound part of the question.

In this lecture, we’ll turn the tables, showing that certain problems cannot be solved more
efficiently than a given bound. This is the lower bound part of the question. In general, this is a
harder task: To establish a lower bound, we have to argue that no algorithm, however smart, can
possibly do better than what we claim; it is no longer sufficient to exhibit an algorithm A and analyze
its performance.

4.1 Sorting and Merging Lower Bounds

Before we look at lower bounds for sorting and merging, let us review the (upper) bounds we have
for various sorting algorithms we’ve covered:

Algorithm Work Span

Quick Sort O(n log n) O(log2 n)
Merge Sort O(n log n) O(log2 n)
Heap Sort O(n log n) O(n log n)
Balanced BST Sort O(n log n) O(log2 n)

Notice that in this table, all algorithms have O(n log n) work—and except for heap sort, every
algorithm is very parallel (log2 n span). Can we sort in less than O(n log n) work? Probably. But we’ll
show that any deterministic comparison-based sorting algorithm must use Ω(n log n) comparisons
to sort n entries in the worst case. In the comparison-based model, we have no domain knowledge
about the entries and the only operation we have to determine the relative order of a pair of entries
x and y is a comparison operation, which returns whether x < y. More precisely, we’ll prove the
following theorem:

Theorem 4.1. For a sequence 〈x1, . . . , xn〉 of n distinct entries, finding the permutation π on [n] such
that xπ(1) < xπ(2) < · · ·< xπ(n) requires, in the worst case, at least n

2
log(n

2
) queries to the < operator.

Since each comparison takes at least constant work, this implies an Ω(n log n) lower bound on
the work required to sort a sequence of length n in the comparison model.

What about merging? Can we merge sorted sequences faster than resorting them? As seen in
previous lectures, we can actually merge two sorted sequences in O(m log(1+ n/m)) work, where
m is the length of the shorter of the two sequences, and n the length of the longer one. We’ll show,
however, that in the comparison-based model, we cannot hope to do better:

7 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

Theorem 4.2. Merging two sorted sequences of lengths m and n (m≤ n) requires at least

m log2(1+
n
m
)

comparison queries in the worst case.

4.2 Decision Trees or The 20 Questions Game

Let’s play game. Suppose I think of an animal but you know for fact it’s one of the following: a fish, a
frog, a fly, a spider, a parrot, or a bison. You want to find out what animal that is by answering the
fewest number of Yes/No questions (you’re only allowed to ask Yes/No questions). What strategy
would you use? Perhaps, you might try the following reasoning process:

Does it live in the
water?

Does it have fins? More than 4 legs?

Can it fly? Can it fly?fish frog

fly spider parrot bison

Y

Y Y

Y Y

N

N N

N N

Interestingly, this strategy is optimal: There is no way you could have asked any 2 Yes/No
questions to tell apart the 6 possible answers. If we can ask only 2 questions, any strategy that
is deterministic and computes the output using only the answers to these Yes/No questions can
distinguish between only 22 = 4 possibilities. Thus, using 3 questions is the best one can do.

Determining the minimum number of questions necessary in the worst case in at the crux of many
lower-bound arguments. For starters, we describe a way to represent a deterministic strategy for
playing such a game in the definition below.

Definition 4.3 (Binary Decision Trees). A decision tree is a tree in which

• each leaf node is an answer (i.e. what the algorithm outputs);

• each internal node represents a query—some question about the input instance—and has k
children, corresponding to one of the k possible responses {0, . . . , k− 1};

• and the answer is computed as follows: we start from the root and follow a path down to a leaf
where at each node, we choose which child to follow based on the query response.

The crucial observation is the following: If we’re allowed to make at most q queries (i.e., ask at
most q Yes/No questions), the number of possible answers we can distinguish is the number of leaves
in a binary tree with depth at most q; this is at most 2q. Taking logs on both sides, we have

If there are N possible outcomes, the number of questions needed is at least log2 N .

That is, there is some outcome, that requires answering at least log2 N questions to determine that
outcome.

8 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

4.3 Warm-up: Guess a Number

As a warm-up question, if I pick a number a between 1 and 220, how many Yes/No questions you
need to ask before you can zero in on a? By the calculation above, since there are N = 220 possible
outcomes, you will need at least

log2 N = 20

questions in the worst case.

Another way to look at the problem is to suppose I am devious and I don’t actually pick a number
in advance. Each time you ask a question of the form “is the number greater than x”, in effect you
are splitting the set of possible numbers into two groups. I always answer so the set of remaining
possible numbers has the greater cardinality. That is, each question you ask eliminates at most half
of the numbers. Since there are N = 220 possible values, I can force you ask log2 N = 20 questions
before I must concede and pick the last remaining number as my a. This variation of the games
shows that no matter what strategy you use to ask questions, there is always some a that would cause
you to ask a lot of questions.

4.4 A Sorting Lower Bound

Let’s turn back to the classical sorting problem. We will prove Theorem 4.1. This theorem follows
almost immediately from our observation about k-ary decision trees. There are n! possible permuta-
tions, and to narrow it down to one permutation which orders this sequence correctly, we’ll need
log(n!) queries, so the number of comparison queries is at least

log(n!) = log n+ log(n− 1) + · · ·+ log(n/2) + · · ·+ log1

≥ log n+ log(n− 1) + · · ·+ log(n/2)

≥ n
2
· log(n/2).

We can further improve the constants by applying Stirling’s formula instead of this crude approxi-
mation. Remember that Stirling’s formula gives the following approximation:

n!=
�n

e

�np
2πn

�

1+Θ(n−1)
�

>

�n

e

�n
,

so log2(n!)> n log2(n/e).

4.5 A Merging Lower Bound

Closely related to the sorting problem is the merging problem: Given two sorted sequences A and B,
the merging problem is to combine these sequences into a sorted one. To apply the argument we used
for sorting, we’ll need to count how many possible outcomes the comparison operation can produce.

Suppose n = |A|, m = |B|, and m ≤ n. We’ll also assume that these sequences are made up of
unique elements. Now observe that we have not made any comparison between elements of A and

9 Version A0,0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Spring 2013)

B. This means any interleaving sequence A’s and B’s elements is possible. Therefore, the number
of possible merged outcomes is the number of ways to choose n positions out from n+m positions
to put A’s elements; this is simply

�n+m
n

�

. Hence, we’ll need, in the worst case, at least log2
�n+m

n

�

comparison queries to merge these sequences.

The following lemma gives a simple lower bound for
�n

r

�

, so that we can simplify log2
�n+m

n

�

to
an expression that we recognize.

Lemma 4.4 (Binomial Lower Bound).
�

n

r

�

≥
�n

r

�r
.

Proof. First, we recall that

�

n

r

�

=
n!

r!(n− r)!
=

n(n− 1)(n− 2) . . . (n− r + 1)
r(r − 1)(r − 2) . . . 1

=
r−1
∏

i=0

n− i

r − i
.

We’ll argue that for 0≤ i <min(r, n), n−i
r−i
≥ n

r
. Notice that

n− i

r − i
≥

n

r
⇐⇒ r(n− i)≥ n(r − i) ⇐⇒ rn− ri ≥ nr − ni ⇐⇒ (n− r)i ≥ 0.

Therefore, we have
�n

r

�

≥
∏r−1

i=0
n−i
r−i
≥ (n/r)r .

With this lemma, we conclude that the number of comparison queries needed to merge sequences
of lengths m and n (m≤ n) is at least

log2

�

n+m

m

�

≥ m log2

�

1+ n
m

�

,

proving Theorem 4.2

10 Version A0,0

	Quicksort
	Expected work for randomized quicksort
	An alternative method

	Expected Span of Quicksort
	Lower Bounds
	Sorting and Merging Lower Bounds
	Decision Trees or The 20 Questions Game
	Warm-up: Guess a Number
	A Sorting Lower Bound
	A Merging Lower Bound

