
Recitation 1

Scan

1.1 Announcements

• SkylineLab has been released, and is due Friday afternoon. It’s worth 125 points.

• BignumLab will be released on Friday.

1

2 RECITATION 1. SCAN

1.2 What is scan?

In the SEQUENCE library, there is a symmetry among certain aggregation functions:

Sequential Parallel
iterate reduce
iteratePrefixes scan
iteratePrefixesIncl scanIncl

We can see this symmetry in their types...

iterate (β * α → β) → β → α seq → β
reduce (α * α → α) → α → α seq → α

iteratePrefixes (β * α → β) → β → α seq → β seq * β
scan (α * α → α) → α → α seq → α seq * α

iteratePrefixesIncl (β * α → β) → β → α seq → β seq
scanIncl (α * α → α) → α → α seq → α seq

...as well as their output behavior: each of the parallel functions has output identical to its
sequential analog under the condition that the first two arguments are an associative function
and a corresponding identity, respectively.

Definition 1.1. A function f is associative if for every x, y, z,

f(f(x, y), z) = f(x, f(y, z)).

Definition 1.2. A value b is an identity of a binary function f if for every x,

f(b, x) = x = f(x, b).

So, for now, you can think of scan as a magical function which performs iteration of an
associative function in parallel. If the function is constant-time, then an application of scan has
linear work and logarithmic span.

Remark 1.3. In reality, we can relax the constraint on the identity. It only
needs to be an identity for the values encountered during the execution of the
reduce, scan, or scanIncl. For example, if S is a sequence of non-
negative integers, then (scan Int.max 0 S) will still be logically equivalent to
(iteratePrefixes Int.max 0 S), despite the fact that, in general, 0 is not an
identity for Int.max.

Built: January 30, 2017

1.3. SKYLINE-FILL 3

1.3 Skyline-Fill

For this example, we’ll use the same conventions given in SkylineLab:

• Skylines are sequences of points (x, y) sorted by x-coordinate,

• all x-coordinates are unique and non-negative, and

• all y-coordinates (heights) are non-negative.

Imagine pouring water on a skyline. How much water can it hold?

Task 1.4. Implement the function

val fill : (int * int) Seq.t → int

where (fill S) returns the area of water which can fill the skyline S. Your implemen-
tation should have O(|S|) work and O(log |S|) span.

We can approach this problem by conceptually splitting the skyline up into columns, de-
termining the quantity of water that each column holds, and finally summing these quantities.
We’ll have one column per adjacent pair of points in the skyline.

For a given segment with height h and width w, if it has a skyscraper to its left with height
` and another to its right with height r, then the area of water we can store above this segment
is w ·max(0,min(`, r)− h). But how do we determine ` and r?

Notice that ` and r are simply the max of all heights that come before and after the current
segment, respectively. The former is the max of a prefix; the latter, the max of a suffix. scan
with Int.max can directly give us maxes of prefixes, but we’ll have to reverse the sequence
and run it again to handle suffixes.

Built: January 30, 2017

4 RECITATION 1. SCAN

Algorithm 1.5. Parallel Skyline-fill.

1 fun fill S =
2 let
3 fun ithSeg i =
4 let val ((x1, h), (x2,)) = (Seq.nth S i, Seq.nth S (i+ 1))
5 in (x2 − x1, h)
6 end
7 val segments = Seq.tabulate ithSeg (Seq.length S - 1)
8
9 val hs = Seq.map (fn (w, h) ⇒ h) segments

10 val (lhs, _) = Seq.scan Int.max 0 hs
11 val (revrhs, _) = Seq.scan Int.max 0 (Seq.rev hs)
12 val rhs = Seq.rev revrhs
13
14 fun zip3With f (A,B,C) =
15 let fun f ′ (x, (y, z)) = f(x, y, z)
16 in Seq.map f ′ (Seq.zip (A, Seq.zip (B,C)))
17 end
18 fun columnPour (`, (w, h), r) =
19 w * Int.max (0, Int.min (`, r)− h)
20 val columns = zip3With columnPour (lhs, segments, rhs)
21 in
22 Seq.reduce op+ 0 columns
23 end

This algorithm meets the required cost bounds:

• Lines 7,9,12,20: O(|S|) work and O(1) span.

• Lines 10,11,22: O(|S|) work and O(log |S|) span.

Built: January 30, 2017

1.4. A GROUP AT DINNER 5

1.4 A Group at Dinner

A group of n friends sit around a circular table at a restaurant. Some of them know what they
want to order; some of them don’t. The ones who don’t know what to order decide to pick the
same thing as the person on their left.

Task 1.6. Implement the function

val groupOrder : (int → α option) → int → α Seq.t

where (groupOrder f n) returns the sequence of orders of a group of n people. f(i)
is either the preferred order of the ith person, or NONE if they don’t know what they want.
Assume the people are labeled 0 to n−1 counter-clockwise, and that at least one person
originally knows what they want to order. Your implementation should have O(n) work
and O(log n) span.

We can begin with the sequence of options indicating preferred orders –
〈
f(i) : 0 ≤ i < n

〉
– but this sequence has “missing pieces” (NONEs) for each person who originally didn’t know
what they wanted. The key to the puzzle is using scan (or actually scanIncl) to “copy”
information from left to right. The necessary function is

fun copy (a, b) =
case b of

NONE ⇒ a
| SOME _ ⇒ b

This function is in fact associative, but we leave proving this as an exercise to the reader. We
can use NONE as its identity.

After copying across the sequence, some values at the front might still be NONE. Since
these should really wrap around from the end of the sequence (the table is circular!), we can
just replace them with the last order. This is guaranteed to be a SOME, because we know that at
least one person in the group originally knew what they wanted to order.

Built: January 30, 2017

6 RECITATION 1. SCAN

Algorithm 1.7. An example of copy-scan.

1 fun groupOrder f n =
2 let
3 fun copy (a, b) =
4 case b of
5 NONE ⇒ a
6 | SOME _ ⇒ b
7
8 val init = Seq.tabulate f n
9 val copiedRight = Seq.scanIncl copy NONE init

10 val SOME lastOrder = Seq.nth copiedRight (n− 1)
11 in
12 Seq.map (fn SOME x ⇒ x | NONE ⇒ lastOrder) copiedRight
13 end

This algorithm meets the required cost bounds:

• Line 8,12: O(n) work and O(1) span.

• Line 9: O(n) work and O(log n) span.

• Line 10: O(1) work and span.

Built: January 30, 2017

1.5. BONUS EXERCISES 7

1.5 Bonus Exercises

Exercise 1.8. Implement parenMatch (from the previous recitation) using scan such
that it has linear work and logarithmic span. Try adapting the iterative approach.

Exercise 1.9. Implement parenDist (from ParenLab) using scan such that it has
linear work and logarithmic span.

Exercise 1.10. Did you know that you can calculate the first n Fibonacci numbers in
O(n) time and O(log n) span? We claim that if we extend the Fibonacci sequence as
so...

F−1 = 1

F0 = 0

F1 = 1

...
Fn = Fn−1 + Fn−2

...that the following holds for n ≥ 0 (easily provable via induction):(
1 1
1 0

)n

=

(
Fn+1 Fn

Fn Fn−1

)
Using this fact, implement a function

val fibs : int → int Seq.t

which returns the first n Fibonacci numbers in O(n) work and O(log n) span. Use
scan to compute prefixes of matrix multiplications.

Exercise 1.11. Implement a function

val parenPairs : Paren.t Seq.t → (int * int) Seq.t

where (parenPairs S) returns a sequence of index-pairs where each pair contains
the index of a parenthesis as well as its matching partner. For example the input
(())() should yield some permutation of 〈(0, 3), (4, 5), (1, 2)〉. Your implementation
should have O(|S| log |S|) work and O(log2 |S|) span.
Hint: try marking each parenthesis with how many other parentheses are enclosing it.
You might also need to sort at some point...

Built: January 30, 2017

8 RECITATION 1. SCAN

.

Built: January 30, 2017

