Recitation 4

Scan Reloaded

4.1 Announcements

- BignumLab has been released, and is due Friday afternoon. It's worth 175 points.
- RandomLab will be released on Friday.

4.2 Implementation

Recall the implementation of scan for sequences of power-of-2 length. Note that we typically refer to line 7 as the contraction step, line 8 as the recursive step, and line 11 as the expansion step.

```
Algorithm 4.1. scan, assuming \(|S|\) is a power of 2.
    fun scan \(f b S=\)
        case \(|S|\) of
            \(0 \Rightarrow(\rangle, b)\)
        \(\mid 1 \Rightarrow(\langle b\rangle, S[0])\)
        \(n \Rightarrow\)
            let
                val \(S^{\prime}=\langle f(S[2 i], S[2 i+1]): 0 \leq i<n / 2\rangle\)
                val \((R, t)=\operatorname{scan} f b S^{\prime}\)
                fun \(P(i)=\) if even \((i)\) then \(R[i / 2]\) else \(f(R[\lfloor i / 2\rfloor], S[i-1])\)
            in
                \((\langle P(i): 0 \leq i<n\rangle, t)\)
            end
```

A diagram should help clear up any confusion. Consider (scan $+0\langle 1,2,3,4,5,6,7,8\rangle$).

4.3 Cost Analysis

Since we so commonly use scan with a constant-time function argument, it is helpful to memorize that it has $O(n)$ work and $O(\log n)$ span in this case. But what about more complex functions? Let's try merge as an example.

Task 4.2. Analyze the work and span of

$$
\operatorname{scan}(\text { merge cmp) }\rangle S
$$

assuming that $|S|=n,|x| \leq m$ for every $x \in S$, and cmp is constant-time. Give your answers as tight Big-O bounds in terms of n and m.

Recall that (merge cmp (A, B)) requires $O(|A|+|B|)$ work and $O(\log |A|+\log |B|)$ span, and it produces a sequence of length $|A|+|B|$.

Our goal is to establish two recurrences $W(n, m)$ and $S(n, m)$. Let's walk through the steps:

- Contraction. We perform $n / 2$ applications of merge, each of which requires $O(m)$ work and $O(\log m)$ span. Therefore this step requires $O(n m)$ work and $O(\log m)$ span.
- Recursion. We recurse on a sequence of half the length. Each element in this sequence is now twice as large. Therefore this step requires $W(n / 2,2 m)$ work and $S(n / 2,2 m)$ span.
- Expansion. Consider the even and odd positions of the output separately.
- The even positions remain unchanged from the recursive result; copying them over to the output incurs a cost of $O(n)$ work and $O(1)$ span.
- The odd positions are determined by $n / 2$ applications of merge. The inputs to these calls, however, are of varying size. Specifically, the merge which generates the $(2 i+1)^{\text {th }}$ position has inputs of size $2 i m$ and m, and therefore requires $O((i+1) m)$ work and $O(\log ((i+1) m))$ span. We add these up for $0 \leq i<n / 2$:
* Work:

$$
\sum_{i=0}^{n / 2-1} O((i+1) m)=O\left(m \sum_{j=1}^{n / 2} j\right)=O\left(n^{2} m\right)
$$

* Span:

$$
\underset{i=0}{n / 2-1} O(\log ((i+1) m))=O(\log (n m))
$$

Therefore this step requires a total of $O\left(n^{2} m\right)$ work and $O(\log (n m))$ span.

We now have two recurrences to solve.

- Work: $W(n, m)=W(n / 2,2 m)+O\left(n^{2} m\right)$.

Counting from $i=0$ at the top, the $i^{\text {th }}$ level of this recurrence has a cost of

$$
O\left(\left(\frac{n}{2^{i}}\right)^{2} 2^{i} m\right)=O\left(\frac{n^{2} m}{2^{i}}\right)
$$

and therefore this recurrence is root dominated, giving us that

$$
W(n, m) \in O\left(n^{2} m\right)
$$

- Span: $S(n, m)=S(n / 2,2 m)+O(\log (n m))$.

The $i^{\text {th }}$ level of this recurrence has a cost of

$$
O\left(\log \left(\frac{n}{2^{i}} 2^{i} m\right)\right)=O(\log (n m))
$$

and therefore this recurrence is balanced. There are $\log _{2} n$ levels, giving us that

$$
S(n, m) \in O(\log n \cdot \log (n m))=O\left(\log ^{2} n+\log n \cdot \log m\right)
$$

4.4 Bonus Exercise: Factorials with Bignums

In this section, we write $* *$ for bignum multiplication and \bar{x} for the bignum representation of x. We'll be using the same conventions here as in BignumLab.

Factorials quickly become too large to represent in a single 32-bit or 64-bit unsigned integer. ${ }^{1}$ This makes them the perfect candidate for bignums, which can be arbitrarily large. Consider the following code, which computes the first n factorials (excluding 0 !):

Algorithm 4.3. Bignum Factorials.

```
fun factorials n = Seq.scanIncl ** \overline{1}\langle\overline{i}:1\leqi\leqn\rangle
```

Exercise 4.4. Analyze the work of (factorials n). Note that you'll first need to determine

1. The work of $\bar{x} * * \bar{y}$, and
2. The bit width of $\bar{x} * * \bar{y}$.

The former is given by solving the recurrence given in BignumLab for multiplication, namely

$$
W(n)=3 W\left(\frac{n}{2}\right)+O(n)
$$

The latter can be determined via a little bit of algebra. Note that the bit width of a number \bar{x} is $1+\left\lfloor\log _{2} x\right\rfloor$, assuming $x \geq 1$.
Warning: this is pretty hard.

[^0]Built: February 1, 2016

[^0]: ${ }^{1}$ With 32-bit unsigned integers, the largest factorial we can compute before encountering overflow is 11 !. For 64-bits, it's 19 !.

