
Recitation 4

Scan Reloaded

4.1 Announcements

• BignumLab has been released, and is due Friday afternoon. It’s worth 175 points.

• RandomLab will be released on Friday.

19



20 RECITATION 4. SCAN RELOADED

4.2 Implementation

Recall the implementation of scan for sequences of power-of-2 length. Note that we typically
refer to line 7 as the contraction step, line 8 as the recursive step, and line 11 as the expansion
step.

Algorithm 4.1. scan, assuming |S| is a power of 2.

1 fun scan f b S =
2 case |S| of
3 0 ⇒

(
〈 〉, b

)
4 | 1 ⇒

(
〈b〉, S[0]

)
5 | n ⇒
6 let
7 val S′ =

〈
f(S[2i], S[2i+ 1]) : 0 ≤ i < n/2

〉
8 val (R, t) = scan f b S′

9 fun P (i) = if even(i) then R[i/2] else f(R [bi/2c] , S[i− 1])
10 in
11

(〈
P (i) : 0 ≤ i < n

〉
, t
)

12 end

A diagram should help clear up any confusion. Consider (scan + 0 〈1, 2, 3, 4, 5, 6, 7, 8〉).

Built: February 1, 2016



4.3. COST ANALYSIS 21

4.3 Cost Analysis

Since we so commonly use scan with a constant-time function argument, it is helpful to mem-
orize that it has O(n) work and O(log n) span in this case. But what about more complex
functions? Let’s try merge as an example.

Task 4.2. Analyze the work and span of

scan (merge cmp) 〈 〉 S

assuming that |S| = n, |x| ≤ m for every x ∈ S, and cmp is constant-time. Give your
answers as tight Big-O bounds in terms of n and m.

Recall that (merge cmp (A,B)) requires O(|A|+ |B|) work and O(log |A|+ log |B|) span,
and it produces a sequence of length |A|+ |B|.

Built: February 1, 2016



22 RECITATION 4. SCAN RELOADED

4.4 Bonus Exercise: Factorials with Bignums

In this section, we write ∗∗ for bignum multiplication and x for the bignum representation of x.
We’ll be using the same conventions here as in BignumLab.

Factorials quickly become too large to represent in a single 32-bit or 64-bit unsigned in-
teger.1 This makes them the perfect candidate for bignums, which can be arbitrarily large.
Consider the following code, which computes the first n factorials (excluding 0!):

Algorithm 4.3. Bignum Factorials.

fun factorials n = Seq.scanIncl ∗∗ 1
〈
i : 1 ≤ i ≤ n

〉

Exercise 4.4. Analyze the work of (factorials n). Note that you’ll first need to
determine

1. The work of x ∗∗ y, and

2. The bit width of x ∗∗ y.

The former is given by solving the recurrence given in BignumLab for multiplication,
namely

W (n) = 3W
(n
2

)
+O(n).

The latter can be determined via a little bit of algebra. Note that the bit width of a
number x is 1 + blog2 xc, assuming x ≥ 1.

Warning: this is pretty hard.

1With 32-bit unsigned integers, the largest factorial we can compute before encountering overflow is 11!. For
64-bits, it’s 19!.

Built: February 1, 2016


	Scan Reloaded
	Announcements
	Implementation
	Cost Analysis
	Bonus Exercise: Factorials with Bignums


