
Recitation 6

Randomization

6.1 Announcements

• RandomLab has been released, and is due Monday, October 2. It’s worth 100 points.

• FingerLab will be released after Exam I, which is going to be on Wednesday, October
4.
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34 RECITATION 6. RANDOMIZATION

6.2 Rock, Paper, Scissors, Shoot!

You and a friend are playing Rock, Paper, Scissors. Despite humans actually being remark-
ably bad at generating randomness, assume that on each round, both you and your friend will
uniformly randomly produce one of Rock, Paper, or Scissors (each has probability 1/3).

Task 6.1. Determine the probability of winning this game.

We make the observation that on any particular round, the probabilities of winning, losing,
and tieing are each 1/3. If we tie, we play another round. Since the game only terminates once
we either win or lose, and these have equal probability on each round, the probability of us
winning overall must be 1/2.

Although this argument is fairly good on its own, here’s the formal version. Let Wi be the
event that we win on round i, counting from i = 1. The event that we win, W , is given by

W =
∞⋃
i=1

Wi.

Notice that these Wi’s are disjoint from one another, and therefore

Pr [W ] =
∞∑
i=1

Pr [Wi] .

On any particular round, the probabilities of winning, losing, and tieing are each 1/3. Therefore

Pr [Wi] = Pr [tie for i− 1 rounds] · Pr
[
win on ith round

]
= (1/3)i−1 · (1/3)
= (1/3)i

We can now solve for the probability of winning overall:

Pr [W ] =
∞∑
i=1

Pr [Wi] =
∞∑
i=1

(1/3)i =
1

2

Task 6.2. How many rounds do we expect to play before someone wins?

The number of rounds we play is a geometric random variable with probability of success
2/3, where a “successful” round is one where we did not tie. The expected number of rounds,
then, is

1

(2/3)
=

3

2
.
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6.3 Flipping Coins

Task 6.3. Describe an algorithm which flips a fair coin an expected constant number of
times in order to simulate a coin with bias p, where 0 < p < 1 (that is, we’re simulating
a coin which flips heads with probability p). It may be helpful to consider writing p as a
binary number 0.p1p2p3 . . ., where each pi ∈ {0, 1}.

Consider the following algorithm: we repeatedly flip our fair coin, interpreting heads as 1 and
tails as 0. On the ith flip, if this flip does not match pi, then we output pi. Otherwise, we try
again with an (i+ 1)th flip.

This algorithm effectively generates a number x between 0 and 1, returning whether or not
x < p. We generate this number one bit at a time. Let xi be the bits of the number we’re
generating. At each round i, we have the invariant that xj = pj for every j < i, and therefore,
as far as we know, x = p. If xi 6= pi, then certainly x 6= p. In this case, if pj = 1 then xi = 0
and we know x < p, returning heads. Otherwise, we know pj = 0 and xi = 1 and therefore
x > p, returning tails.

Note that both x and p could have an infinite binary representation, but this algorithm avoids
an infinite runtime by only generating as far as necessary in order to determine whether or not
x < p.

How many flips does this algorithm require in expectation? At each step i, Pr [xi = pi] =
1/2, since xi is chosenly fairly from {0, 1}. We keep retrying until xi 6= pi, and therefore
the number of flips required is a geometric random variable with probability of success 1/2.
Therefore, in expectation, this algorithm will terminate after 1

1/2
= 2 fair flips!
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6.4 High Probability

Task 6.4. Umut has a secret algorithm which has O(log n) span with high probability,
and O(n) span in the worst case. Specifically, Umut’s algorithm has O(log n) span
with probability at least 1 − 1

n3 . Prove that Umut’s algorithm has O(log n) span in
expectation.

Let “good” be the event that S(n) ∈ O(log n), and “bad” be the otherwise event. Using the law
of total expectation, we have

E [S(n)] = E [S(n) | good]Pr [good] + E [S(n) | bad]Pr [bad]

= E [S(n) | good]
(
1− Pr [bad]

)
+ E [S(n) | bad]Pr [bad]

Note that we know the following:

• E [S(n) | good] is upper bounded by O(log n),

• E [S(n) | bad] is upper bounded by O(n), and

• Pr [bad] is upper bounded by 1
n3 .

Therefore,

E [S(n)] ≤ O(log n) ·
(
1− Pr [bad]

)
+O(n) · Pr [bad]

= O(log n) +
(
O(n)−O(log n)

)
· Pr [bad]

≤ O(log n) +O(n) · 1
n3

= O(log n) +O

(
1

n2

)
= O(log n)
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6.5 The Birthday Problem

Task 6.5. Suppose there are D days in the year, and assume that all babies are born
uniformly randomly on any one of these days. If there are n people in a room, what is
the expected number of them to share a birthday with at least one other person in the
same room?

Let S be the number of people to share a birthday with at least one other person, and Bi be the
birthday of the ith person. Define

Si =

{
1, if ∃j . j 6= i ∧Bi = Bj

0, otherwise

Therefore S =
∑

i Si. By linearity of expectation,

E [S] =
∑
i

E [Si] =
∑
i

Pr [∃j . j 6= i ∧Bi = Bj] .

We have

Pr [∃j . j 6= i ∧Bi = Bj]

= 1− Pr [∀j . j = i ∨Bi 6= Bj]

= 1−
(
D − 1

D

)n−1

and therefore

E [S] = n

(
1−

(
D − 1

D

)n−1
)
.
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6.6 Other Exercises

Exercise 6.6. Prove that the expected value of a geometric random variable X with
probability of success p is 1/p in two separate ways:

1. by directly solving using the definition of expected value, and

2. by writing a recurrence and solving it.

In the second approach, use the law of total expectation, i.e.

E [X] =
∑
i

E [X | Yi]Pr [Yi]

where the Yi’s form a partition of the sample space.

Exercise 6.7. Suppose you are given a coin with unknown but fixed bias p, where 0 <
p < 1 (in your analysis, treat p as a constant). Describe an algorithm which flips this
mysterious coin an expected constant number of times in order to simulate a fair coin.
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